跳到主要內容

簡易檢索 / 詳目顯示

研究生: 黃偉宸
Wei-Chen Huang
論文名稱: 碳六十衍生物於鈣鈦礦材料介面之研究及其太陽能電池之特性
Investigations of C60 derivatives deposited on perovskite thin films and photovoltaic performance of the corresponding solar cells
指導教授: 陳昇暉
Sheng-Hui Chen
張勝雄
Sheng Hsiung Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 照明與顯示科技研究所
Graduate Institute of Lighting and Display Science
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 94
中文關鍵詞: 鈣鈦礦太陽能電池
外文關鍵詞: peroveskite
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著化石能源的枯竭與環保意思的抬頭,綠色能源逐漸被人們重視,而綠色能源以太陽能最受到矚目。在太陽能電池之中,近幾年來以鈣鈦礦薄膜太陽能電池發展最為迅速,而鈣鈦礦薄膜太陽能電池以膜層堆疊的方式製作,我們將對主動層與電子傳遞層間的介面進行研究,以提升鈣鈦礦薄膜太陽能電池的效率及穩定性。
    本論文研究之鈣鈦礦薄膜太陽能電池架構為:Ag/PCBM:MC60/perovskite/PEDOT:PSS/ITO/glass。以不同比例的PCBM與MC60混合作為電子傳遞層(electron transport layer, ETL),藉由MC60的親水性提高電子傳遞層對主動層的覆蓋性,研究其對主動層(perovskite)介面的影響,以提升鈣鈦礦薄膜太陽能電池之功率轉換效率,架構中的Ag為電池的陰極、ITO(氧化銦錫)為電池的陽極,並以poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS)作為元件的電洞傳遞層(hole transport layer, HTL)。以此架構以一步驟溶液工程所製作的鈣鈦礦薄膜太陽能電池其最高功率轉換效率達到13.2% ,對應之開路電壓:0.974V、短路電流密度:20.57 mA/cm2與填充因子:69.1%


    Due to the worldwide decrease in fossil fuels as well as the rising awareness in environmental protection, green energy is becoming more and more important. Among all green energy solutions, photovoltaic solar cells and their potential to make a positive impact is highly anticipated. In recent years, organo-metal halide perovskite solar cells have been developed at an incredibly fast rate.
    Perovskite solar cells are fabricated using the layer by layer method while each layer bringing a different feature to the solar cell. In order to achieve an understanding of how to make these highly power conversion efficient, the following will discuss the structure and features found at the electron transport layer (ETL)/perovskite interface. In this thesis, the structure of the perovskite solar cells is Ag/ETL/CH3NH3PbI3/PEDOT:PSS/ITO/glass. The ETL was made by mixing PC61BM and MC60 in different ratios. A PEDOT:PSS(1:20 wt%) thin film was used as the hole transport layer. The CH3NH3PbI3 thin film was used as the light absorbing layer. In our perovskite solar cells, the best power conversion efficiency is 13.2%. The open-circuit voltage, short-circuit current density and fill factor are 0.974 V, 20.57 mA/cm2 and 69.1%, respectively.

    第一章 緒論 1 1.1前言 1 1.2太陽能電池種類 4 1.2.1無機太陽能電池 4 1.2.2 有機太陽能電池 5 1.3 研究動機 8 1.4 本文架構 9 第二章 鈣鈦礦太陽能電池原理及介紹 11 2.1 鈣鈦礦材料介紹 11 2.2 鈣鈦礦材料應用於敏化太陽能電池 13 2.3 鈣鈦礦成膜的影響因素 16 2.4 鈣鈦礦薄膜太陽能電池工作原理 19 2.5 本論文使用之文獻回顧 21 第三章 實驗方法 25 3.1實驗藥品 25 3.2實驗製程儀器 25 3.2.1 旋轉塗佈機(Spin Coater) 25 3.2.2熱蒸鍍鍍膜系統(Thermal Evaporation Deposition) 26 3.3量測儀器 27 3.3.1太陽光模擬器(Solar Simulator , YSS-50A) 27 3.3.2光激發螢光光譜儀(Photoluminescence Spectrometer) 27 3.3.3拉曼散射光譜儀(Raman scattering spectrometer) 28 3.3.4 紫外光/可見光光譜儀(UV/VIS Spectrophotometer , Hitachi U-4100) 29 3.3.5原子力顯微鏡(Atomic Force Microscope, AFM, SEIKO E-sweep System) 30 3.3.6 X光繞射儀 (X-Ray Diffractometer , D8 Advance, Bruker) 31 3.4藥品純化與溶液配置 32 3.4.1 甲基胺純化 32 3.4.2溶液配置 33 3.5 鈣鈦礦太陽能電池實驗流程 34 3.5.1 玻璃基板清洗 35 3.5.2 UV Ozone cleaner 36 3.5.3 旋塗電洞傳遞層 36 3.5.4 旋塗主動層 37 3.5.5 旋塗電子傳遞層 37 3.5.6 刮出對電極 37 3.5.7 蒸鍍銀電極 38 第四章 鈣鈦礦太陽能電池製作及結果分析 39 4.1材料選用 39 4.1.1 電洞傳遞層之選擇 40 4.1.2 主動層CH3NH3PbI3薄膜 42 4.1.3 電子傳遞層 43 4.2利用不同體積之反溶劑製作鈣鈦礦薄膜提升元件效率表現 44 4.3 C60衍生物之改質研究 55 第五章 結論 72 參考文獻 74

    [1] Distributed Generation Renewable Energy Estimate of Costs, NREL, (2016). (http://www.nrel.gov/analysis/tech_lcoe_re_cost_est.html)
    [2] L. L. Kazmerski, “Best Research-Cell Efficiencies,”NERL, March(2016).(https://www.nrel.gov/pv/assets/images/efficiency-chart.png)
    [3] A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,” Journal of the American Chemical Society, 131, 6050-6051, (2009).
    [4] Yang, Woon Seok, et al. “High-performance photovoltaic perovskite layers fabricated through intramolecular exchange,” Science,348.6240, 1234-1237,(2015).
    [5] 有機太陽能電池技術發展, 黃建榮
    [6] R. Komiya, A. Fukui, N. Murofushi, N. Koide, R. Yamanaka, and H. Katayama, “Improvement of the conversion efficiency of a monolithic type dyesensitized solar cell module,” in Technical Digest of the 21st International Photovoltaic Science and Engineering Conference, 2C-5O-08, Fukuoka, Japan, (2011).
    [7] G. F. L. M.W. Davidson, “Photomicrography in the geological sciences,” Journal of Geological Education, 39,403-422,(1991).
    [8] A. Kojima, K. Teshima, T. Miyasaka and Y. Shirai, “Novel photoeletrochemical cell with mesoscopic electrodes sensitized by lead-halide compound (2),” 210th ECS Meeting, Cancun, Mexico, Abstr. No. 397, October(2006).
    [9] G. Xing, N. Mathews, S. Sun, S. S. Lim, Y. M. Lam, M. Grätzel, S. Mhaisalkar, and T. C. Sum, “Long-range balanced electron-and hole-transport lengths in organic-inorganic CH3NH3PbI3,”Science,342, 344-347, (2013).
    [10] K. Tanaka, T. Takahashi, T. Ban, T. Kondo, K. Uchida, and N. Miura, “Comparative study on the excitons in lead-halide-based perovskite-type crystals CH3NH3PbBr3CH3NH3Pb3,” Solid State Communications,127, 619-623, (2003).
    [11] A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,”Journal of the American Chemical Society,131,6050-6051, (2009).
    [12] J.-H. Im, C.-R. Lee, J.-W. Lee, S.-W. Park, and N.-G. Park, “6.5% efficient perovskite quantum-dot-sensitized solar cell, ”Nanoscale,3, 4088-4093,( 2011).
    [13] H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, and J. E. Moser, “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%,” Scientific Reports,2,( 2012).
    [14] J. M. Ball, M. M. Lee, A. Hey, and H. J. Snaith, “Low-temperature prOCessed meso-superstructured to thin-film perovskite solar cells,”Energy & Environmental Science, 6, 1739-1743,( 2013).
    [15] J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, and S. I. Seok, “Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells,” Nano Letters,13, 1764-1769, (2013).
    [16] J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,”Nature, 499, 316-319, (2013).
    [17] H. Zhou, Q. Chen, G. Li, S. Luo, T.-b. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu, and Y. Yang, “Interface engineering of highly efficient perovskite solar cells,”Science, 345, 542-546, (2014).
    [18] J.-H. Im, I.-H. Jang, N. Pellet, M. Grätzel, and N.-G. Park, “Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells,”Nature Nanotechnology, 9, 927-932, (2014).
    [19] M. Saliba, T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena, M. K. Nazeeruddin, S. M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, and M. Gratzel, “Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency,” Energy & Environmental science, 9, 1989-1997,( 2016).
    [20] H.S. Kim, S.H. Im, N.G. Park, “Organolead Halide Perovskite: New
    Horizons in Solar Cell Research,” J. Phys. Chem. C, 118 , 5615-
    5625, (2014).
    [21] H.-S. Kim, S. H. Im, and N.-G. Park, “Organolead halide perovskite: New horizons in solar cell research,” The Journal of Physical Chemistry C, 118, 5615-5625,( 2014).
    [22] N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, and S. I. Seok, "Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells," Nature materials, 13, 897-903,(2014).
    [23] J.-H. Im, C.-R. Lee, J.-W. Lee, S.-W. Park, N.-G. Park, “6.5% efficient perovskite quantum-dot-sensitized solar cell,” Nanoscale, 4088-4093, March ( 2011).
    [24] F. Huang, Y. Dkhissi, W. Huang, M. Xiao, I. Benesperi, S. Rubanov, Y. Zhu, X. Lin, L. Jiang, and Y. Zhou, “Gas-assisted preparation of lead iodide perovskite films consisting of a monolayer of single crystalline grains for high efficiency planar solar cells, ” Nano Energy, 10, 10-18, (2014).
    [25] W.-J. Yin, T. Shi, and Y. Yan, “Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber,” Applied Physics Letters, 104, 063903, (2014).
    [26] J. M. Frost, K. T. Butler, F. Brivio, C. H. Hendon, M. Van schilfgaarde, and A. Walsh, “Atomistic origins of high-performance in hybrid halide perovskite solar cells,” Nano Letters,14, 2584-2590, (2014).
    [27] Chang, S. H., Lin, K. F., Chiu, K. Y., Tsai, C. L., Cheng, H. M., Yeh, S. C., ... & Wu, C. G. ,“Improving the efficiency of CH 3NH3PbI 3 based photovoltaics by tuning the work function of the PEDOT: PSS hole transport layer, ” Solar Energy, 122, 892-899(2015).
    [28] C.-C. Chen, Sheng Hsiung Chang*, L.-C. Chen, C.-L. Tsai, H.-M. Cheng, W.-C. Huang, W.-N. Chen, Y.-C. Lu, Z.-L. Tseng, K. Y. Chiu, S.-H. Chen, and C.-G. Wu, “Interplay between nucleation and crystal growth during the formation of CH3NH3PbI3 thin films and their application in solar cells,” Solar Energy Materials & Solar Cells,159, 583-598, January (2017)
    [29] Shao, Yuchuan, et al. “Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells.” Nature Communications (2014).
    [30] C.-L. Tien, H.-G. Zeng, “Measuring residual stress of anisotropic thin film by fast Fourier transform,” Opt. Express 18, 16594–16600, (2010).
    [31] Jo, Jang, et al. "Time‐Dependent Morphology Evolution by Annealing Processes on Polymer: Fullerene Blend Solar Cells." Advanced Functional Materials 19.6, 866-874, (2009).

    QR CODE
    :::