跳到主要內容

簡易檢索 / 詳目顯示

研究生: 金緯立
Wei-Li Chin
論文名稱: 耦合共振腔光波導頻寬優化研究
Bandwidth optimization of coupled resonator optical waveguide (CROW) filter
指導教授: 王培勳
Pei-Hsun Wang
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 104
中文關鍵詞: 環形共振腔耦合共振腔光波導光濾波器矽光子
外文關鍵詞: Ring resonator, Coupled resonator optical waveguide, Optical filter, Silicon Photonics
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 矽光子學已成為光子積體電路PIC(Photonic Integrated Circuit)的重要技術之一。這種技術被期望可克服長途通信中數據傳輸頻寬瓶頸的解決方法。高速傳輸需求的增加也促進了在光網路中大量使用密集波長分波多工(DWDM)系統。氮化矽耦合共振腔光波導結構是一種具有傳播損耗低、訊息不失真、大頻寬和結構密集且尺寸盡可能微小的技術,可應用於濾波器、色散補償和光儲存器領域。
    本論文選擇低損耗材料氮化矽,研究耦合共振光波導頻寬優化第二部分討論 典型的Add-drop環形共振腔與雙環型共振腔透過 OptSim Circuit 與 MATLAB 數值計算模擬。利 用這些模擬方法進行分析 模擬驗證,確保模擬更為精確。為了設計有效濾波器元件並討論在不同尺度下之雙環型共振腔,結果顯示不對稱環型共振腔有較窄的半高頻寬,因游標尺效(Vernier effect)有顯著較大的自由頻譜範圍。
    論文第三部分主要討論耦合共振腔光波導設計改善方法,並討論兩種非對稱耦合共振光波導的尺度設計形式。模擬結果顯示,這一種非對稱耦合共振光波導的半高頻寬都比原本的耦合共振光波導提高了超過45%,表明非對稱的耦合共振光波導具有較寬的半高頻寬。此外,我們還深入討論了功率耦合係數與半高頻寬的關係。模擬結果顯示,半高頻寬與功率耦合係數呈現線性相關,這啟發了可以通過改善波導幾何結構或環腔設計來改善耦合共振光波導的半高頻寬。
    在進一步的研究中,我們發現耦合共振光波導的功率耦合係數必須保持一定
    的比例,以避免產生帶通波紋。此外,當環腔與環腔的功率耦合係數大於波導與環腔的功率耦合係數時,帶通濾波器也會產生大量波紋,從而無法為 有 效濾波器功能。綜上所述,改善耦合共振光波導的耦合係數,同時有助於避免波紋的產生進一步改善半高頻寬效益。
    在研究中,我們還發現,光波導的損耗對於耦合共振光波導的設計和分析非常重要。分析結果顯示,光波導的輕微損耗有助於消除波紋,使得耦合共振腔光波導的表現接近於理想情況。此外,損耗與頻寬呈現反比趨勢。因此,在耦合共振光波導的設計和分析中,需要注意光波導的損耗對性能的影響。
    本論文研究了耦合共振光波導頻寬優化的方法,探討新的設計方式以改善半高頻寬,進而提升抑制波紋效益。研究中使用Synopsys OptSim Circuit設計軟體,展示了CROW架構布局與模擬測試結果,以展現矽光子積體電路的潛力與可用性。根據研究結果顯示改善半高頻寬,進一步提高矽光子積體電路的性能。


    Silicon photonics has emerged as a pivotal technology within the realm of photonic
    integrated circuits (PICs). This groundbreaking technology holds the potential to
    overcome existing bandwidth bottlenecks in long distance communication through the
    deployment of compact, integrated devices. The escalating demand for high speed data
    transmission has precipitated the widespread adoption of dense wavelength division
    multiplexing (DWDM) systems across optical networks. Among va rious material
    options, silicon nitride stands out in the fabrication of coupled resonator optical
    waveguides due to its inherent advantages: low propagation loss, distortion free
    transmission, ample bandwidth, and compact form factor. These characteristic s make
    silicon nitride waveguides well suited for applications in filter design, optical
    modulators, and optical network infrastructure.
    In this thesis, the author opts for the low-loss material, silicon nitride, to investigate the optimization of filter bandwidth based on coupled resonator optical waveguides (CROW). Initially, the thesis delves into the typical transmission response of add-drop ring resonators and double-ring resonators, leveraging OptSim Circuit and MATLAB for numerical calculations. Simulation results indicate that the bandwidth of the double-ring resonator can be enhanced, showing up to a 28% improvement compared to that of the conventional single-ring resonator. Subsequently, for the design of efficient filtering elements, the author examines double-ring resonators with varying design parameters. The findings reveal that asymmetric ring resonators possess a narrower half-width bandwidth and a significantly larger free spectral range, attributable to the Vernier effect.
    Third,in this par t of the discussion, we further explore the design elements of coupled resonator optical waveguides by examining two designs of asymmetric coupled
    resonator waveguides. Simulations reveal that these two asymmetric designs offer bandwidths up to 45 % greater than that of their symmetric counterparts.
    Moreover, we delve into the relationship between the power coupling coefficient and the resulting bandwidth. A linear correlation emerges from our simulations,suggesting that enhancing waveguide coupling strength can lead to a significant increase in the bandwidth of the coupled resonator optical waveguides. This finding underlines the potential of optimizing waveguide coupling for the efficient enhancement of bandwidth in such systems
    Furthermore, attention must be paid to the ripple effect in bandpass filters. This undesired phenomenon can be substantially reduced through careful optimization of the coupling coefficient. On the other hand, the inherent loss that optical waveguides exhibit is an influential facto r in the design process of coupled resonator waveguides.Precise adjustment of the waveguide loss parameters offers a method to not only mitigate the ripple but also facilitate the creation of an optimal bandpass filter. A notable observation from our stud y is the inverse proportionality between loss and bandwidth.This relationship presents an additional mechanism for achieving performance optimization in the design of coupled resonator waveguides
    In summary, our proposed strategies for the optimization of
    coupled resonator optical waveguides mark a significant step forward in the field. These methodologies present a powerful toolkit for boosting the bandwidth of bandpass filters based on Coupled Resonator Optical Waveguides (CROW). By refining the coupling coefficient and mitigating inherent waveguide loss through precise adjustments, we can notably enhance bandwidth and suppress the undesirable ripple effect.Our research also underscores the importance of understanding the inverse proportionality between loss and bandwidth, a relationship that adds another dimension to our optimization process.Looking forward, these advancements open up new avenues for improving the efficiency and functionality of optical communication systems, with potential implications for a broad array of applications in telecommunications and beyond

    中文摘要............................................................................................................................i ABSTRACT....................................................................................................................iii 誌謝..................................................................................................................................vi 目錄.................................................................................................................................vii 圖目錄...............................................................................................................................x 表目錄............................................................................................................................xiv 第一章緒論...........................................................................................................1 1-1研究背景...................................................................................................1 1-1-1微形環共振腔............................................................................................3 1-1-2DWDM濾波器應用..................................................................................4 1-2模擬軟體介紹...........................................................................................7 1-2-1時域有限差分法原理................................................................................7 1-2-2OptSim Circuit...........................................................................................8 1-2-3FemSIM......................................................................................................9 1-3論文架構.................................................................................................10 第二章微環形共振腔基本特性與原理.............................................................12 2-1Add-drop環形共振腔原理.....................................................................14 2-1-1環腔共振條件..........................................................................................16 2-1-2品質因子(Quality Factor)........................................................................17 2-1-3自由頻譜範圍( Free Spectral Range)......................................................17 2-1-4半高頻寬(Full Width at Half Maximum)................................................18 2-1-5耦合條件..................................................................................................19 2-2雙環型波導(Serially Coupled Double Ring Resonator).......................20 2-2-1雙環型共振腔原理..................................................................................21 2-3模擬設計.................................................................................................22 2-3-1MATLAB Add-drop環形共振腔模擬....................................................24 2-3-2OptSim Circuit Add-drop環形共振腔模擬............................................25 2-3-3MATLAB雙環型共振腔模擬.................................................................27 2-3-4單環、雙環共振腔模擬數據結論..........................................................30 2-4OptSim Circuit不對稱雙環型共振腔模擬............................................33 第三章耦合共振光波導CROW最佳化..........................................................40 3-1耦合共振光波導CROW模擬...............................................................41 3-1-1OptSim Circuit 耦合共振光波導CROW模擬.....................................42 3-1-2OptSim Circuit 不對稱耦合共振光波導CROW模擬.........................45 3-1-3模擬優化CROW數據結論....................................................................50 3-2耦合共振光波導CROW功率耦合係數最佳化...................................52 3-3耦合共振光波導CROW損耗討論.......................................................58 第四章量測與數據分析.....................................................................................62 4-1簡介Add-drop環形共振腔製程............................................................63 4-2Add-drop環形共振腔量測與數據分析結果.........................................64 4-3不對稱雙環型共振腔量測與數據分析結果.........................................68 4-4耦合共振光波導量測結果與數據分析.................................................71 第五章結論與未來展望.....................................................................................77 參考文獻.........................................................................................................................79 附錄一.............................................................................................................................83 附錄二.............................................................................................................................84

    [1]X. Sui, Q. Wu, J. Liu, Q. Chen, and G. Gu, "A review of optical neural networks," IEEE Access, vol. 8, pp. 70773-70783, 2020.
    [2]M. Nakajima, K. Tanaka, and T. Hashimoto, "Scalable reservoir computing on coherent linear photonic processor," Communications Physics, vol. 4, no. 1, p. 20, 2021.
    [3]R. Hamerly, L. Bernstein, A. Sludds, M. Soljačić, and D. Englund, "Large-scale optical neural networks based on photoelectric multiplication," Physical Review X, vol. 9, no. 2, p. 021032, 2019.
    [4]H. Zhang et al., "Integrated photonic reservoir computing based on hierarchical time-multiplexing structure," Optics express, vol. 22, no. 25, pp. 31356-31370, 2014.
    [5]H. Shu et al., "Microcomb-driven silicon photonic systems," Nature, vol. 605, no. 7910, pp. 457-463, 2022.
    [6]G. N. Tsigaridas, "A study on refractive index sensors based on optical micro-ring resonators," Photonic Sensors, vol. 7, no. 3, pp. 217-225, 2017.
    [7]Z. Yao et al., "Integrated silicon photonic microresonators: emerging technologies," IEEE Journal of Selected Topics in Quantum Electronics, vol. 24, no. 6, pp. 1-24, 2018.
    [8]J. K. Poon, J. Scheuer, S. Mookherjea, G. T. Paloczi, Y. Huang, and A. Yariv, "Matrix analysis of microring coupled-resonator optical waveguides," Optics express, vol. 12, no. 1, pp. 90-103, 2004.
    [9]J. Goodman, "introduction to Fourier Optics," ed: McGraw-Hill, 1968.
    [10]S. Pan, Z. Tang, M. Huang, and S. Li, "Reflective-type microring resonator for on-chip reconfigurable microwave photonic systems," IEEE Journal of Selected Topics in Quantum Electronics, vol. 26, no. 5, pp. 1-12, 2020.
    [11]J. Zou et al., "Silicon-Based Arrayed waveguide gratings for WDM and spectroscopic analysis applications," Optics & Laser Technology, vol. 147, p. 107656, 2022.
    [12]G. Meltz, W. W. Morey, and W. H. Glenn, "Formation of Bragg gratings in optical fibers by a transverse holographic method," Optics letters, vol. 14, no. 15, pp. 823-825, 1989.
    [13]P. Dumon, "Ultra-compact integrated optical filters in silicon-on-insulator by means of wafer-scale technology," PhD Disseration, Ghent University, 2007.
    [14]W. Shi, Y. Tian, and A. Gervais, "Scaling capacity of fiber-optic transmission systems via silicon photonics," Nanophotonics, vol. 9, no. 16, pp. 4629-4663, 2020.
    [15]B. Little et al., "Very high-order microring resonator filters for WDM applications," IEEE Photonics Technology Letters, vol. 16, no. 10, pp. 2263-2265, 2004.
    [16]C. K. Madsen and J. H. Zhao, Optical filter design and analysis. Wiley New York, 1999.
    [17]"What is WDM?" https://www.viavisolutions.com/en-uk/solutions/dwdm (accessed 2023/02/02).
    [18]C. Headquarters, "Introduction to DWDM technology," ed: San Jose: Cisco Systems, Inc, 2000.
    [19]Synopsys. "FemSIM Product Overview." https://www.synopsys.com/photonic-solutions/rsoft-photonic-device-tools/passive-device-femsim.html (accessed 2023/02/02).
    [20]K. Yee, "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Transactions on antennas and propagation, vol. 14, no. 3, pp. 302-307, 1966.
    [21]A. Taflove, "Application of the finite-difference time-domain method to sinusoidal steady-state electromagnetic-penetration problems," IEEE Transactions on electromagnetic compatibility, no. 3, pp. 191-202, 1980.
    [22]R. J. P. Menéndez, "Fiber-optic ring resonator interferometer," Interferometry-Recent Developments and Contemporary Applications, 2018.
    [23]X. Ji, S. Roberts, M. Corato-Zanarella, and M. Lipson, "Methods to achieve ultra-high quality factor silicon nitride resonators," APL Photonics, vol. 6, no. 7, p. 071101, 2021.
    [24]H. El Dirani et al., "Ultralow-loss tightly confining Si 3 N 4 waveguides and high-Q microresonators," Optics express, vol. 27, no. 21, pp. 30726-30740, 2019.
    [25]D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, "New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics," Nature photonics, vol. 7, no. 8, pp. 597-607, 2013.
    [26]M. W. Puckett et al., "422 Million intrinsic quality factor planar integrated all-waveguide resonator with sub-MHz linewidth," Nature communications, vol. 12, no. 1, pp. 1-8, 2021.
    [27]C. Wang, M. Zhang, M. Yu, R. Zhu, H. Hu, and M. Loncar, "Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation," Nature communications, vol. 10, no. 1, p. 978, 2019.
    [28]M. Zhang, C. Wang, R. Cheng, A. Shams-Ansari, and M. Lončar, "Monolithic ultra-high-Q lithium niobate microring resonator," Optica, vol. 4, no. 12, pp. 1536-1537, 2017.
    [29]E. Stassen, M. Pu, E. Semenova, E. Zavarin, W. Lundin, and K. Yvind, "High Q gallium nitride microring resonators," in The European Conference on Lasers and Electro-Optics, 2017: Optical Society of America, p. CE_5_2.
    [30]J. M. Vaughan, The Fabry–Perot interferometer: history, theory, practice and applications. Routledge, 2017.
    [31]Y. Yamamoto and R. E. Slusher, "Optical processes in microcavities," Physics today, vol. 46, no. 6, pp. 66-73, 1993.
    [32]B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, "Microring resonator channel dropping filters," Journal of lightwave technology, vol. 15, no. 6, pp. 998-1005, 1997.
    [33]C. Manolatou, M. Khan, S. Fan, P. R. Villeneuve, H. Haus, and J. Joannopoulos, "Coupling of modes analysis of resonant channel add-drop filters," IEEE journal of quantum electronics, vol. 35, no. 9, pp. 1322-1331, 1999.
    [34]S. Xiao, M. H. Khan, H. Shen, and M. Qi, "Modeling and measurement of losses in silicon-on-insulator resonators and bends," Optics Express, vol. 15, no. 17, pp. 10553-10561, 2007.
    [35]P.-H. Wang, T.-H. Lee, and W.-H. Huang, "Fabrication of tapered waveguides by i-line UV lithography for flexible coupling control," Optics Express, vol. 31, no. 3, pp. 4281-4290, 2023.
    [36]M. Hossein-Zadeh and K. J. Vahala, "Importance of Intrinsic-$ Q $ in Microring-Based Optical Filters and Dispersion-Compensation Devices," IEEE Photonics Technology Letters, vol. 19, no. 14, pp. 1045-1047, 2007.
    [37]K. Oda, N. Takato, and H. Toba, "A wide-FSR waveguide double-ring resonator for optical FDM transmission systems," Journal of lightwave technology, vol. 9, no. 6, pp. 728-736, 1991.
    [38]B. E. Little et al., "Ultra-compact Si-SiO 2 microring resonator optical channel dropping filters," IEEE Photonics Technology Letters, vol. 10, no. 4, pp. 549-551, 1998.
    [39]A. Yariv, "Universal relations for coupling of optical power between microresonators and dielectric waveguides," Electronics letters, vol. 36, no. 4, pp. 321-322, 2000.
    [40]B. G. Lee, B. A. Small, K. Bergman, Q. Xu, and M. Lipson, "Transmission of high-data-rate optical signals through a micrometer-scale silicon ring resonator," Optics letters, vol. 31, no. 18, pp. 2701-2703, 2006.
    [41]J. Kedia and N. Gupta, "An FDTD analysis of serially coupled double ring resonator for DWDM," Optik, vol. 126, no. 24, pp. 5641-5644, 2015.
    [42]W. Bogaerts et al., "Silicon microring resonators," Laser & Photonics Reviews, vol. 6, no. 1, pp. 47-73, 2012.
    [43]K. J. Vahala, "Optical microcavities," nature, vol. 424, no. 6950, pp. 839-846, 2003.
    [44]A. Tikan et al., "Emergent nonlinear phenomena in a driven dissipative photonic dimer," Nature Physics, vol. 17, no. 5, pp. 604-610, 2021.
    [45]J. K. Poon, J. Scheuer, Y. Xu, and A. Yariv, "Designing coupled-resonator optical waveguide delay lines," JOSA B, vol. 21, no. 9, pp. 1665-1673, 2004.
    [46]S. Asadi and H. R. Askari, "The effect of parameters of double micro-ring resonator coupled in series pattern on electromagnetically induced transparency," Optik, vol. 241, p. 167020, 2021.
    [47]D. G. Rabus, Integrated ring resonators. Springer, 2007.
    [48]Q. Li, X. Chen, J. Song, M. Bi, M. Hu, and S. Li, "Time delay in double micro-ring resonator with grating," Optics Communications, vol. 376, pp. 6-13, 2016.
    [49]Y. Yanagase, S. Suzuki, Y. Kokubun, and S. T. Chu, "Box-like filter response and expansion of FSR by a vertically triple coupled microring resonator filter," Journal of lightwave technology, vol. 20, no. 8, p. 1525, 2002.
    [50]S. Radosavljevic et al., "Mid-infrared Vernier racetrack resonator tunable filter implemented on a germanium on SOI waveguide platform," Optical Materials Express, vol. 8, no. 4, pp. 824-835, 2018.
    [51]X. Gu, D. Zhu, S. Li, Y. Zhao, and S. Pan, "Photonic RF channelization based on series-coupled asymmetric double-ring resonator filter," in The 7th IEEE/International Conference on Advanced Infocomm Technology, 2014: IEEE, pp. 240-244.
    [52]X. Gu, D. Zhu, Y. Zhao, and S. Pan, "Series-coupled double-ring resonators with asymmetric radii for use in channelizer," in Optoelectronic Devices and Integration V, 2014, vol. 9270: SPIE, pp. 175-180.
    [53]M.-C. M. Lee, "Ultra-thin Si-padded Si 3 N 4 waveguides for low-loss photonics," Optics Letters, vol. 46, no. 14, pp. 3408-3411, 2021.
    [54]J. Heebner, R. Grover, and T. Ibrahim, Optical microresonator theory. Springer, 2008.
    [55]R. K. Chang and A. J. Campillo, Optical processes in microcavities. World scientific, 1996.
    [56]J. B. Khurgin and R. S. Tucker, Slow light: Science and applications. CRC press, 2018.
    [57]F. Xia, L. Sekaric, M. O’Boyle, and Y. Vlasov, "Coupled resonator optical waveguides based on silicon-on-insulator photonic wires," Applied physics letters, vol. 89, no. 4, p. 041122, 2006.
    [58]P.-H. Wang, Y.-X. Zhong, and S.-A. Huang, "Numerical analysis of nanotapered waveguides for cavity coupling optimization," Journal of Nanophotonics, vol. 15, no. 4, pp. 046006-046006, 2021.
    [59]D. J. Blumenthal, R. Heideman, D. Geuzebroek, A. Leinse, and C. Roeloffzen, "Silicon nitride in silicon photonics," Proceedings of the IEEE, vol. 106, no. 12, pp. 2209-2231, 2018.
    [60]X. Ji et al., "Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold," Optica, vol. 4, no. 6, pp. 619-624, 2017.
    [61]J. F. Bauters et al., "Ultra-low-loss high-aspect-ratio Si 3 N 4 waveguides," Optics express, vol. 19, no. 4, pp. 3163-3174, 2011.
    [62]F. Rukerandanga, S. Musyoki, and E. Ataro, "Ultra-Low Power All-Optically Tuned Hybrid Graphene Ultra Silicon-Rich Nitride Ring Resonator-Based Add-Drop Filter for DWDM Systems," Optics, vol. 3, no. 3, pp. 287-303, 2022.
    [63]F. Bazouband and A. Rahimpour, "Improving the triple coupled ring-resonator performance as an optical filter," International Journal of Optics and Photonics, vol. 15, no. 2, pp. 115-124, 2021.
    [64]A. Melloni and M. Martinelli, "Synthesis of direct-coupled-resonators bandpass filters for WDM systems," Journal of Lightwave Technology, vol. 20, no. 2, p. 296, 2002.
    [65]F. Morichetti, C. Ferrari, A. Canciamilla, and A. Melloni, "The first decade of coupled resonator optical waveguides: bringing slow light to applications," Laser & Photonics Reviews, vol. 6, no. 1, pp. 74-96, 2012.

    QR CODE
    :::