| 研究生: |
張吉良 Ji-Lian Chang |
|---|---|
| 論文名稱: |
利用進化演算法在多層感知機結構上之判別回授等化器 |
| 指導教授: |
賀嘉律
Chia-Lu Ho |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 畢業學年度: | 89 |
| 語文別: | 中文 |
| 論文頁數: | 104 |
| 中文關鍵詞: | 類神經網路 、符元干擾 、等化器 、多層感知器 、進化演算法 、判別回授等化器 、交配 、突變 |
| 外文關鍵詞: | Neural Networks, ISI, Equalizer, MLP, EA, DFE, crossover, mutation |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在近幾年來,類神經網路(Neural Networks)十分被重視,它是一個解決非線性問題的有力工具,它被應用在許多方面,而在調適性等化器上面,也得到非常好的效果,在數位通訊系統中,為了消除符元干擾(Inter Symbol Interference, ISI)和Noise,等化器是十分必要的,對於通訊系統而言,訊號間干擾的ISI效應和Noise不僅是造成本身傳送訊號的失真,而且可能還會造成接收端的判別錯誤,使得接收到的訊號發生錯誤,資料不正確,接收端的等化器(Equalizer)可消除ISI效應和Noise,資料的正確率更是靠它才能大大提升,而調適性等化器通常使用參數的學習演算法,傳統的做法是使用最小均方差演算法(Least Mean Square, LMS)。
這篇論文提出一個以新的進化演算法(Evolution Algorithm, EA)應用在多層感知器(Multi-Layer Perceptron, MLP)的後遞式判別式回授化器(Decision Feedback Equalizer, DFE)。是一種利用類神經網路(Neural Networks),模仿生物神經元、生物基因進化遺傳,經由交配(crossover)、突變(mutation)、選擇(selection)、求得好的等化器係數,並且希望由進化演算法中與電腦模擬的結果中,比較出和其他做法的差異和性能。
[1] S. Siu, G.J. Gibson, and C.F.N. Cowan, “Decision feedback equalizer using neural network structures and performance comparison with stand architecture”, IEE Proc. Part I, Communication, Speech, and Vision, Vol. 137, NO.4, pp 221-225,August, 1990.
[2] S. Siu, and C.F.N. Cowan, “Performance analysis of the norm back propagation algorithm for adaptive equalizer” IEE Proc.Part F, Vol. 140, No. 1, Febr. 1993.
[3] G.J. Gibson, S. Siu,and C.F.N. Cowan, “The application of nonlinear structures to the reconstruction of binary signal”, IEEE Trans. On Signal Processing, Vol. 39, No. 8,
pp.1877-1884, Aug, 1991.
[4] S. Qureshi, “Adaptive Equalisation”, Proceedings of the IEEE, Vol.73, No.9 pp.1349-1387,Sept.1985.
[5] T. Back, Evolutionary algorithm in theory and practice: evolution strategies, evolutionary programming, genetic algorithms. Oxford, 1996.
[6] L. Zadeh, “Outline of a new approach to the analysis of complex systems and decision process ”, IEEE Trans. Syst., Man, Cybern., vol. SMC-3, pp.28-44, 1973.
[7] L. Schlaffi (1814-1895), “Gesammelte Mathtematische Abhandlungen”, vol. 1, Birkhauser, Basel, 1950, pp209-212.
[8] J. Makhoul, R. Schwartz, and A. E. Jaroudi, “Classifications Capability of two layer neural nets”, Proc. IEEE Int. Conf. ASSP, pp.635-638, May, 1989.
[9] J. Mirchandani, and W. Cao, “On hidden nodes for neural nets”, IEEE Trans. Circuit and System, vol. 36, No. 5, pp.661-664, May 1989.
[10] G. J. Gibson, and C.F.N. Cowan, “On the decision regions of multiplayer perceptrons”, Proc. of the IEEE, vol. 78, pp. 258-262.
[11] F.Sweeney, P. Power, and C.F.N. Cowan, “An analysis of evolutionary techniques for channel equalisation”, Irish Signals and Systems Conference 1998.
[12] Thomas Back, Frank Hoffmeister, Hans-Paul Schwefel, “A Survey of Evolution Strategies”, University of Dortmund Department of Computer Science XI P.O Box 50 05 00 . D-4600 Dortmund 50 . Germany.
[13] Ching-Haur Chang and Sammy Siu, Che-Ho Wei, “Complex Backpropagation Decision Feedback Equalizer With Decision Using Neural Nets”, journal of the Chinese institute of electrical engineering, vol.7, no.1 pp63-69(2000).
[14] Thmos Back, Hans-Paul Schwefel, “Evolutionary Computation: An Overview”, Evolutionary Computation, 1996., Proceedings of IEEE International Conference on , 1996 , Page(s): 20 -29
[15] Sammy Siu, Ching-Haur Chang, and Che-HO Wei, Transactions Briefs,“ Norm Back Propagation Algorithm For Adaptive Equalizer”, IEEE Transactions on circuits and systems-II: Analog and digital sigital processing, vol.42, no.9, September 1995.
[16] P.Power, F. Sweeney, C.F.N. Cowan, “EA Crossover Schemes For a MLP Channel Equalizer”, Electronics, Circuits and Systems, 1999. Proceedings of ICECS ''99. The 6th IEEE International Conference on Volume: 1 , 1999 , Page(s): 407 -410 vol.1
[17] G. Gibson, S.Siu, C. Cowan, “Multi-Layer Perceptron Structure Applied to Adaptive Equalizers for Data Communications”, IEEE Proceedings ICASSP Glasgow, Scotland, May 1989, pp. 1183-1186.
[18] F.Sweeney, P Power, C.Cowan, “The Use of Evolutionary
Optimisation in Channel Equalisation”, Eusipco `98 proceeding, Rhodes, Greece, Sept. 1998, Vol.4, pp.2221-2224.
[19] D. Goldberg, “Genetic Algorithms in Search Optimisation”, Addison-Wesley,1989.
[20] C. Lau, “Neural Networks, Theoretical foundations and analysis”, IEEE Press,Piscataway, NJ, 1991.
[21] C.H. Chang, S. Siu, C.H. Wei, “A Polynomial —Perceptron based Decision Feedback Equalizer with a Robust Learning Algorithm”. Signal Processing, Vol.47, No.2 pp.145-158, 1996.
[22] S. Siu, C.H. Chang, C.H. Wei, “On the Effect of p of the Norm Back Propagation Algorithm for Adaptive Equalization”. IEEE Transactions on Ciucuits and Systems II: Analog and Digital Signal Processing, Sept, 1995,, Vol.42, No.9, pp.604-607.
[23] C.H. Chang, S. Siu, and C.H. Wei, “A Decision Feedback Equalizer Using Higher-Order Correction”, IEEE, Int. Symposium on Circuits and Systems, Proc. Vol.1, pp.707-710, Sheraton, Chicago Hotel & Towers Chicago, IIIinois, May 3-6, 1993.
[24] S. Siu, C.H. Chang, and C.H. Wei, “Square- Root Recursive Prediction Error Algorithm for Perceptron-Based Adaptive Equalization Over Frequency Selcetive Fading Channel”, IEEE Int. Symposium on Circuits and System, Seattle, Washington, USA, April 30 May 3, 1995.
[25] S. Siu, G.J. Gibson, and C.F.N. Cowan, “Decisino Feedback Equalization Using Neural Network Structures”, Proc. IEE Int. Conf. On Neural Networks, pp.124-128, Oct.16-18, 1989, London, U.K.
[26] G.J. Gibson, S. Siu, and C.F.N. Cowan, “Application of Multi-layer Perceptron as Adaptive Channel Equalizers”, Adaptive Systems in Control and Signal Processing 1989. Selected papers from the IFAC Symposium, Glasgow, U.K.,19-21 April 1989 (Oxford, U.K. : Pergamon), pp.573-578.
[27] S. Siu, and C.F.N. Cowan, “Adaptive Equalization Using Back Propagation learning Algorithm”, Proc. IEE Int. Conf. On Neural Networks ,Nov. 18-20, 1991, U.K.
[28] C.H. Chang, S. Siu,and C.H. Wei, “Decision Feedback Equalization Using Complex Back Propagation Algorithm”, IEEE Int. Symposium on Circuits ans Systems, H.K. 1997.
[29] S. Siu, J.L.Shi, C.S. Liao, and M.J. Wu, “Digital Synchronization Network”, Teleom. Technical Quarterly, Vol.10, No.3, Febr., 1991.
[30] S. Siu, J.L.Shi, C.S. Liao, and M.J. Wu, “The Performance of the Synchronization Nwtwork Clocks in Digital Network”, Telcom, Technical Quarterly, Vol.12, No.2, 1992.
[31] S. Siu, C.H. Chang, C.H. Wei, “Reduction of Nonlinear Distortion Using Adaptive Polynomial-Perceptron Equalizer”, Proc. of the First(1995) Radio Science Symposium, Kaohsiung, Taiwan, ROC, pp.245-249, Aug.1995.
[32] 蘇木春, 張孝德, “機器學習─類神經網路、模糊系統以及基因演算法則”, 全華科技圖書股份有限公司, 二版, 88.
[33] 王炤棋, “進化計算與並行式類神經網路應用於無線網路頻道配置之研究”, 國立中央大學資訊工程研究所碩士論文, 民86.
[34] 施柏屹, “倒傳遞類神經網路學習收斂之初步探討”, 國立中央大學機械工程研究所碩士論文, 民89.
[35] 陳建錦, “應用進化演算法解二次分配問題”, 國立中央大學資訊工程研究所碩士論文, 民88.
[36] 陳君瑋, “全數位化π/4-shifted DQPSK之分析與實現”, 國立中央大學電機工程研究所碩士論文, 民89.
[37] 孫春在博士, “人工智慧課程”, 交大資訊科學研究所.
[38] 張清濠, “使用健全學習法則的多項式類神經網路等化器”, 國立交通大學電子研究所博士論文, 民84.
[39] 林繼洲, “函數連結與模糊適應等化器效能評估”, 元智大學電機工程研究所碩士論文, 民88.
[40] Simon Haykin, “Neural Networks”, McMaster University, Hamilton, Ontario. Canada
[41] Yoh-Han Pao, “Adaptive Pattern Recognition and Neural Networks”, Case Western Reserve University.