| 研究生: |
涂書豪 Shu-hao Tu |
|---|---|
| 論文名稱: |
碳鋼與鋁-矽-鎂合金反應之機制探討 |
| 指導教授: |
施登士
Teng-Shih Shih |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 96 |
| 中文關鍵詞: | A356.2合金 、滑石粉 、鋁鎂合金 、鋁矽合金 、碳通道 、氧化膜 |
| 外文關鍵詞: | talcum powder, Al-Mg alloy, oxide film, carbon channel, Al-Si alloy |
| 相關次數: | 點閱:8 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以1040與1020作為模具模擬材料,鋁湯部份分別採用純鋁、鋁鎂合金、鋁矽合金及A356,分別探討表面粗糙度帶入氧化膜、碳鋼中含碳量以及碳鋼表面噴覆滑石粉對鐵-鋁化合物生長的影響;接著再探討鋁湯中含有鎂、矽元素對於鐵-鋁化合物生長的影響。
實驗結果顯示:
(1)碳鋼表面粗糙度帶入的空氣與氧化膜會形成隔絕層,隨著時間增加,由於氧化鋁膜與鋁湯的熱膨脹係數差異,導致氧化鋁膜碎裂,使得鋁湯直接接觸碳鋼表面。
(2)鋁原子沿著肥粒鐵晶界擴散進入肥粒鐵中,然而在鐵-鋁化合物生長過程中,沃斯田鐵含有的碳會擴散,並且堆積在氧化膜上,或者是在堆積的過程中被正在生長的鐵-鋁化合物包覆起來形成碳通道。
(3)鋁湯中所含的矽會與氧化鋁膜反應並分解氧化鋁膜,使得在初期碳鋼較快接觸到鋁湯,但隨時間增加,矽原子擴散至碳鋼基地與鐵-鋁化合物介面之間形成碳化矽,使得鐵-鋁化合物生長受到障礙,因此長時間的生長趨勢減緩。
(4)湯中所含的鎂極易與氧化鋁反應形成尖晶石(spinel),使得在鐵-鋁化
合物與鋁湯的介面之間受到阻礙。
(5)碳鋼表面噴覆滑石粉,能夠有效的阻擋鋁湯直接接觸碳鋼表面。
(6)在A356合金中,在初期容易產生多元氧化物,降低了熱裂的可能性,使得在初期所產生鐵-鋁化合物厚度相當小;之後在碳鋼基地與鐵-鋁化合物介面之間則是鋁湯以及碳鋼中所含矽原子扮演阻礙的角色。
This study used 1040 and 1020 carbon steels to simulate the materials of molds, and the aluminum melt adopted pure aluminum, Al-Mg alloy, Al-Si alloy and A356 separately. The growing of the Fe-Al compound was influenced respectively by the surface roughness formed oxide film, the carbon content of the carbon steel and sprayed talcum powder on the surface of the carbon steel and then investigated the influence of the magnesium and silicon contained in the aluminum melt.
Experimental results show:
1. It would form the barrier layer that was caused by the surface roughness of the carbon steel. With time increased, because the difference of the thermal expansion factor among aluminum oxide film and aluminum melt led to the crack of the aluminum oxide film, and the aluminum melt contacted the surface of the carbon steel directly.
2. Aluminum atoms diffused into ferrite along the ferrite grain boundary. During the growing of the Fe-Al compound, the carbon contained in the austenite that diffused, and stacked in the oxide or wrapped by the growing Fe-Al compound then formed the carbon channel.
3. The silicon contained in the aluminum melt reacted with the aluminum oxide film and dissolved it. In the initial stage, it made the carbon steel to contact the aluminum melt faster. But with the time increased, the silicon atoms diffused into between the carbon steel substrate and the Fe-Al compound then formed silicon carbide. It obstructed the growing of the Fe-Al compound and retarded the trend of growing time in long period.
4. The magnesium contained in the aluminum melt was apt to react with the aluminum oxide and formed spinel. It hindered between the Fe-Al compound and the aluminum melt.
5. Coating the talcum powder on the surface of the carbon steel can prevent the aluminum melt to contact the surface of the carbon steel effectively.
6. In the A356 alloy, it was apt to form the diverse oxide in the initial stage and decrease the probability of the thermal cracking. It made the thickness of the Fe-Al compound very thin in the initial stage. The aluminum melt and the silicon contained in the carbon steel retarded between the interface of the carbon steel substrate and the Fe-Al compound.
1. Reed-Hill, Robert E, Physical metallurgy principle, PWS publishing company,
Boston, 1994, p5,590
2. 呂璞石,黃振賢,金屬材料,文京圖書有限公司,民國76年,p206,242,253-254
3. 賴耿陽,非鐵金屬材料,復漢出版社,台南,民國87年,p121-173
4. Lennart Backerud, Guocai Chai, Jarmo Tamminen, “Solidification Characteristics of Aluminum Alloys”, AFS/SKANALUMINUM, 2 (1990) 71-79
5. C. R. Loper,” Fluidity of Aluminum-Silicon Casting Alloys”, AFS Transactions,
100 (1992) 533-538
6. G. Lesile Armstrong, Robert D. Luckett,” Aluminum Die Casting Alloys”, Die casting engineer, 28 (1984) 10-16
7. H.R Shahverdi, M.R Ghomashchi, S. Shabestari, J. Hejazi, “ Microstructural analysis of interfacial reaction between molten aluminium and solid iron”, Journal of Materials Processing Technology, 124 ( 2002) 345-352
8. K. Bouche, F. Barbier, A. Coulet, “ Intermetallic compound layer growth between solid iron and molten aluminum”, Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 249 (1998) 167-175
9. V. N. Yeremenko, Ya. V. Natanzon, V. I. Dybkov, “The effect of dissolution on the growth of the Fe2Al5 interlayer in the solid iron-liquid aluminium system”, Journal of Materials Science, 16 (1981) 1748-1756
10. V. Joshi, A. Srivastava, R. Shivpuri, “ Intermetallic formation and its relation to interface mass loss and tribology in die casting dies”, Wear, 256 (2004) 1232-1235
11. Wang Deqing, Shi Ziyuan, Zou Longjiang, “A liquid aluminum corrosion resistance surface in steel substrate”, Applied Surface Science, 214 (2003) 304-311
12. Q. Han, S. Viswanathan, “Analysis of the mechanism of die soldering in aluminum die casting”, Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 34 (2003) 139-146
13. S. Kobayashi, T. Yakou, “Control of intermetallic compound layers at interface between steel and aluminum by diffusion-treatment”, Materials Science and Engineering A, 338(2002) 44-53
14. S. Shankar, D. Apelian, “Die soldering: Mechanism of the interface reaction between molten aluminum alloy and tool steel”, Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 33 (2002) 465-476
15. M. Sundqvist, S. Hogmark, “Effects of liquid aluminium on hot-work tool steel”, Tribology International, 26 (1993) 129-134
16. A. Bahadur, O.N. Mohanty, “Structural Studies of Hot Dip Aluminized Coatings on Mild Steel”, Materials Transactions, JIM, 32 (1991), 1053-1061
17. M.Yan, Z. Fan, “The erosion of H21 tool steel in molten A380 alloy”, Journal of Materials Science, 35 (2000) 1661-1667
18. G. Eggeler, W. Auer, H. Kaesche, “On the influence of silicon on the growth of the alloy layer during hot dip aluminizing”, Journal of Materials Science, 21 (1986) 3348-3350
19. S. Shankar, D. Apelian, “Mechanism and preventive measures for die soldering during Al casting in a ferrous mold”, JOM, 54 (2002) 47-54
20.黃朝鍾,不同塗模參數對A356鋁合金流動性之研究,國立中央大學機械工程研究所碩士論文,桃園,民國88年6月。
21.謝政宏, 黃立奇, 翁震杰, 蔡兆豐, 葉俊麟, 鋁合金重力及低壓鑄造金屬模塗模劑性能之研究, 鑄工第23卷第4期民國86年12月, p69-83
22.R. A. Richard, A Robie,B. S. Hemingway, J. R. Fisher, Thermodynamic Properties of Minerals and Related Substances at 298.15K and 1 Bar(105 Pascals) Pressure and at Higher Temperatures, Washington : U.S. Govt. Print. Off., 1978, p137,262
23. James M. Gere, Stephen P. Timoshenko, Mechanics of Materials, Boston PWS 1984, H4
24. AS Handbook, 15, 2005
25.J. Campbell, Castings, Butterworth-Heinemann, 2004, p19,151-152
26.Teng-Shih Shih, In-Chan Chen, “Decomposition and Reaction of Alumina in the Aluminum Alloy Castings”, JIM, NO MRA 2005043, accepted
27.G.M. Bodner and H.L. Pardue, Chemistry, Wiley, New York, 1995, pA-4
28.I. Brain, O. Knacke, Thermochemical properties of inorganic substances, Berlin Springer, New York, 1973, p26,1342
29.陳英昌,鋁合金中氧化膜的生長與分解, 國立中央大學機械工程研究所碩士論文,桃園,民國92年6月