| 研究生: |
徐彥明 Yan-ming Hsu |
|---|---|
| 論文名稱: |
利用超分子團鏈共聚高分子模板合成二氧化鈦奈米孔洞陣列薄膜應用於染敏太陽能電池 Well ordered mesoporous TiO2 nanostructures synthesized from Dendron-jacketed block copolymer templates for Dye-Sensitized Solar Cell |
| 指導教授: |
孫亞賢
Ya-sen Sun |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 66 |
| 中文關鍵詞: | 超分子團鏈共聚物 、熱回火 、模板合成 、染敏化電池 |
| 外文關鍵詞: | supramolecular, thermal annealed, nanotemplate, Dye-Sensitized Solar Cell |
| 相關次數: | 點閱:18 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文研究刮膜製程下,超分子團鏈共聚物薄膜之自組織行為。經由穿透式顯微鏡和掠角小角度X光散射量測下,我們發現超分子團鏈共聚物薄膜在熱回火過程,內部結構由橢球狀結構,經由rhombohedral之過渡態再轉變成垂直六方排列柱狀結構。利用超分子團鏈共聚物所形成之水平和垂直奈米柱狀陣列模板,透過模板合成方式製備出二氧化鈦孔洞陣列薄膜。最後將製備完成之二氧化鈦薄膜應用於染料敏化太陽能電池工作電極,比較二氧化鈦奈米結構為粒子、水平孔洞陣列、垂直孔洞陣列時的電池效率值。此外,我們也製備出雙層結構工作電極,觀察是否在不同結構的搭配下,效率值之變化。
In this study, we have demonstrated that supramolecular dendron-jacketed block copolymers can be used as nano-sized templates to synthesize high densities of arrays of TiO2 nanostructures Upon tailoring the grafted fractions of small molecules to change the volume fraction of PS segments within self-assembled PS-P4VP(3C12)0.7 films, the nanostructures of the films can be systematically controlled. Preferential incorporation of 3C12 into the P4VP domains changed the volume fraction (f) of the PS domain. When the volume fraction of PS reached f = 0.29 %, the internal nanostructures of the films changed from spherical nanodomains (S) to perpendicularly-oriented nanocylinders (C┴) after being thermally-annealed at 150 oC for 24 h. By analyzing the cross-section images of TEM and scattering patterns of GISAXS, we discovered that the morphological transition of S→C┴ underwent a rhombohedral state. Next we immersed the self-assembled PS-P4VP(3C12)0.7 films in ethanol containing TiF4, by which TiF4 dissolved to form titanium ions in ethanol. Since 3C12 small molecules were soluble in ethanol and have stronger affinity to the P4VP domain than 3C12, the titanium ions could replace 3C12 to preferentially bond the P4VP domains. We also used GISAXS to characterize the structural evolution of the films in an immersion process. Finally the nanodomains were further used as templates to direct the synthesis of nanoporous TiO2 thin films after immersion in solutions containing TiF4 followed by high-intense light exposure. The synthesized TiO2 nanostructures can be further facilely used for electrodes of dye-sensitized solar cells (DSSC). Various nanostructured DSSCs devices were fabricated, and their performances were also tested and discussed in this thesis.
1. O'Regan, B.; Gratzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 1991, 353, 737-740.
2. Yip, C.-T.; Guo, M.; Huang, H.; Zhou, L.; Wang, Y.; Huang, C. Open-ended TiO2 nanotubes formed by two-step anodization and their application in dye-sensitized solar cells. Nanoscale 2012, 4, 448-450.
3. Adachi, M.; Murata, Y.; Takao, J.; Jiu, J.; Sakamoto, M.; Wang, F. Highly Efficient Dye-Sensitized Solar Cells with a Titania Thin-Film Electrode Composed of a Network Structure of Single-Crystal-like TiO2 Nanowires Made by the “Oriented Attachment” Mechanism. Journal of the American Chemical Society 2004, 126, 14943-14949.
4. Kang, S. H.; Choi, S. H.; Kang, M. S.; Kim, J. Y.; Kim, H. S.; Hyeon, T.; Sung, Y. E. Nanorod-Based Dye-Sensitized Solar Cells with Improved Charge Collection Efficiency. Advanced Materials 2008, 20, 54-58.
5. Ou, H.-H.; Lo, S.-L. Review of titania nanotubes synthesized via the hydrothermal treatment: Fabrication, modification, and application. Separation and Purification Technology 2007, 58, 179-191.
6. Kasuga, T.; Hiramatsu, M.; Hoson, A.; Sekino, T.; Niihara, K. Formation of Titanium Oxide Nanotube. Langmuir 1998, 14, 3160-3163.
7. Hoyer, P. Formation of a Titanium Dioxide Nanotube Array. Langmuir 1996, 12, 1411-1413.
8. Sander, M. S.; Côté, M. J.; Gu, W.; Kile, B. M.; Tripp, C. P. Template-Assisted Fabrication of Dense, Aligned Arrays of Titania Nanotubes with Well-Controlled Dimensions on Substrates. Advanced Materials 2004, 16, 2052-2057.
9. Kasuga, T.; Hiramatsu, M.; Hoson, A.; Sekino, T.; Niihara, K. Titania Nanotubes Prepared by Chemical Processing. Advanced Materials 1999, 11, 1307-1311.
10. Gong, D.; Grimes, C. A.; Varghese, O. K.; Hu, W.; Singh, R. S.; Chen, Z.; Dickey, E. C. Titanium oxide nanotube arrays prepared by anodic oxidation. Journal of Materials Research 2001, 16, 3331-3334.
11. Macak, J. M.; Albu, S. P.; Schmuki, P. Towards ideal hexagonal self-ordering of TiO2 nanotubes. physica status solidi (RRL) – Rapid Research Letters 2007, 1, 181-183.
12. Ciferri, A. Supramolecular polymers. 2nd ed.; Taylor & Francis: Boca Raton, 2005; p xiii, 761 p.
13. Valkama, S.; Ruotsalainen, T.; Nykänen, A.; Laiho, A.; Kosonen, H.; ten Brinke, G.; Ikkala, O.; Ruokolainen, J. Self-Assembled Structures in Diblock Copolymers with Hydrogen-Bonded Amphiphilic Plasticizing Compounds. Macromolecules 2006, 39, 9327-9336.
14. Yoon, J.; Jung, S. Y.; Ahn, B.; Heo, K.; Jin, S.; Iyoda, T.; Yoshida, H.; Ree, M. Order−Order and Order−Disorder Transitions in Thin Films of an Amphiphilic Liquid Crystalline Diblock Copolymer. The Journal of Physical Chemistry B 2008, 112, 8486-8495.
15. Crossland, E. J. W.; Kamperman, M.; Nedelcu, M.; Ducati, C.; Wiesner, U.; Smilgies, D. M.; Toombes, G. E. S.; Hillmyer, M. A.; Ludwigs, S.; Steiner, U.; Snaith, H. J. A Bicontinuous Double Gyroid Hybrid Solar Cell. Nano Letters 2008, 9, 2807-2812.
16. Kuila, B. K.; Nandan, B.; Bohme, M.; Janke, A.; Stamm, M. Vertically oriented arrays of polyaniline nanorods and their super electrochemical properties. Chemical Communications 2009, 5749-5751.
17. Ho, R.-M.; Tseng, W.-H.; Fan, H.-W.; Chiang, Y.-W.; Lin, C.-C.; Ko, B.-T.; Huang, B.-H. Solvent-induced microdomain orientation in polystyrene-b-poly(l-lactide) diblock copolymer thin films for nanopatterning. Polymer 2005, 46, 9362-9377.
18. Phillip, W. A.; Hillmyer, M. A.; Cussler, E. L. Cylinder Orientation Mechanism in Block Copolymer Thin Films Upon Solvent Evaporation. Macromolecules 2010, 43, 7763-7770.
19. Villanueva-Cab, J.; Jang, S.-R.; Halverson, A. F.; Zhu, K.; Frank, A. J. Trap-Free Transport in Ordered and Disordered TiO2 Nanostructures. Nano Letters 2014, 14, 2305-2309.
20. Roy, P.; Kim, D.; Lee, K.; Spiecker, E.; Schmuki, P. TiO2 nanotubes and their application in dye-sensitized solar cells. Nanoscale 2010, 2, 45-59.
21. Nelson, J. Continuous-time random-walk model of electron transport in nanocrystalline <span class="aps-inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mrow><mi mathvariant="normal">TiO</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span> electrodes. Physical Review B 1999, 59, 15374-15380.
22. Bisquert, J. Fractional Diffusion in the Multiple-Trapping Regime and Revision of the Equivalence with the Continuous-Time Random Walk. Physical Review Letters 2003, 91, 010602.