| 研究生: |
簡村誠 Tsun-Cheng Chien |
|---|---|
| 論文名稱: |
口腔磁振影像舌頭構造之自動分割 Automatic Segmentation of the Tongue Structure from Human Oral MR Images |
| 指導教授: |
吳炤民
Chao-Min Wu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 121 |
| 中文關鍵詞: | 影像分割 、磁振影像 、等位函數法 、梯度向量流蛇模型 、蛇模型 |
| 外文關鍵詞: | Image Segmentation, Magnetic Resonance Imaging (MRI), Level Set, Gradient Vector Flow Snake, Snake |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究的最終目標是利用建構口腔舌頭模型,來研究生理語音構音的機制。因此利用口腔磁振影像分割出舌頭構造所重建的舌頭模型來代表實際的舌頭大小是很重要的步驟,而舌頭磁振影像分割的好壞則關係著重建出來的三維影像準確度。本研究主要目的在節省時間人力成本考量下,對口腔磁振影像自動分割出舌頭構造,並與手動分割出來的結果做比較以瞭解自動分割的準確性。本研究提出結合等位函數法與梯度向量流蛇模型的方法,利用等位函數法做影像自動分割,再用梯度向量流蛇模型做修正舌頭邊緣並平滑化輪廓的步驟。結果顯示本研究一個個案分割的時間約需5.5分鐘,比熟悉舌頭構造操作者手動分割所需22.6分鐘來得快。本研究的準確評估方法是利用相似係數法,結果顯示我們用的方法對大部分切面之平均相似係數都大於0.88 (8位個案,4女、4男),達到不錯的結果。比較本研究分割與手動分割重建後的三維影像在外形上大致相同只是有些不平整,但從中央矢狀切面來看舌頭內部構造在直覺上沒有差別。
The long term purpose of this research is to study the physiological articulation mechanism based on a three-dimensional (3D) tongue model that is reconstructed from oral magnetic resonance images (MRI). The accuracy of reconstructed 3D tongue depends on the results of image segmentation of tongue structure from oral MRI data. The main purpose of this study is to automatically segment tongue structure from the oral MRI data not only to save time and efforts for data processing but also to keep the accuracy of automatic segmentation the same as the manual segmentation. This study adopted Level Set (LS) method to segment image automatically and used Gradient Vector Flow Snake (GVFS) method to move the contours toward the tongue boundary and to smooth the segmented contours. The results of our study showed that 5.5 minutes were taken to segment one subject automatically. This is faster than the time needed (22.6 min.) for manual segmentation by a well-trained operator. Similarity index was used to evaluate the accuracy of our segmentation. The results by our method showed average slice similarity index is greater than 0.88 (8 subjects, 4 females, 4 males). This indicates excellent agreement. In addition, the 3D tongue reconstructed from this study is less smooth than by the manual segmentation, and the shape of the 3D tongue reconstructed from this study is approximately similar to the manual segmentation. Finally, the internal structure of the tongue observed from this study from the tongue mid-sagittal slice is visually the same as the manual segmentation.
Bartko, J. J. (1991). Measurement and reliability: Statistical thinking considerations. Schizophrenia Bullet, 17, 483-489.
Canny, J. F. (1986). A Computational Approach to Edge Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8, 679-698.
Caselles, V., Kimmel, R., & Sapiro, G. (1997). Geodesic Active Contours.International Journal of Computer Vision, 22, 61-79.
Chan, T. F., & Vese, L. A. (2001). Active contours without edges. IEEE Trans. Image Processing, 10, 266-277.
Cohen, L. D. (1991). On active contour models and balloons. CVGIP: Image Understand, 53, 211–218.
Cohen, L. D., & Cohen, I. (1993). Finite-element methods for active contour models and balloons for 2-D and 3-D images. IEEE Trans. Pattern Anal. Machine Intell, 15, 1131–1147.
Courant, R., & Hilbert, D. (1953). Methods of Mathematical Physics, 1. New York: Interscience
Evans, L. (1998). Partial Differential Equations. Providence: American Mathematical Society.
Goldenberg, R., Kimmel, R., Rivlin, E., & Rudzsky, M. (2001). Fast Geodesic Active Contours. IEEE Trans. on Pattern Analysis and Machine Intelligence, 10, 1467-1475.
Gonzalez R. C., & Woods R. E. (2002). Digital Image Processing 2/e. Pearson Edu. Inc. Prentice Hall.
Grevera, G. J., & Udupa, J. K. (1996). Shape-Based Interpolation of Multidimensional Grey-Level Images. IEEE Trantransactions on Medical Imaging, 15, 881–892.
Han, X., Xu, C., & Prince, J. L. (2003). A Topology Preserving Level Set Method for Geometric Deformable Models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25, 755-768.
Hao, J., Shen, Y., & Wang, Q. (2007). Segmentation for MRA Image: An Improved Level-Set Approach. IEEE Transactions on Instrumentation and Measurement, 56, 1316-1321.
Kass, M., Witkin, A., & Terzopoulos, D. (1987). Snakes: active contour models. intern. Journal of Computer Vision, 321–331.
Lee T. Y., & Wang W. H. (2000). Morphology-Based Three-Dimensional Interpolation. IEEE Transactions on Medical Imaging, 19, 711–721.
Li, C. (2005). http://www.engr.uconn.edu/~cmli/
Li, C., Xu, C., Gui, C., & Fox, M. D. (2005). Level set evolution without re-initialization: a new variational formulation. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1, 430-436.
Lobregt, S., & Viergever, M. A. (1995). A Discrete Dynamic Contour Model. IEEE Trans.on Medical Imaging, 14, 12-24.
Ma, Wei-Ying., & Manjunath B.S. (2000). EdgeFlow. a technique for boundary detection and image segmentation. IEEE Transactions on Image Processing, 9, 1375-1388.
Malladi, R., Sethian, J., & Vemuri, B. (1995). Shape modeling with front propagation: A level set approach. IEEE Trans. Pattern Anal. Machine Intell, 17, 158–175.
Miller, J. V., Breen, D. E., Lorensen, W.E., OBara, R.M., & Wozny, M.J. (1991). Geometrically Deformed Models: A Method for Extracting Closed Geometric Models from Volume Data Computer Graphics, 25, 217–226.
Osher, S., & Sethian, J. A. (1988). Fronts propagation with curvature dependent speed: Algorithms based on Hamilton–Jacobi formulations. J. Computat. Phys, 79, 12–49.
Osher, S., & Fedkiw, R. (2003). Level set methods and dynamic implicit surfaces. New York: Springer.
Paragios, N., & Deriche, D. (2000). Geodesic active contours and level sets for the detection and tracking of moving objects. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22, 266-280.
Pratt, W. (1978). Digital Image Processing. New York: Wiley. 495–501.
Sethian, J. A., & Strain, J. (1992). Crystal growth and dendritic solidification. J. of Computational Physics, 98, 231-253.
Sussman, M., Fatemi, E., Smereka, P., & Osher, S. (1994). An Improved Level Set Method for Incompressible Two-Phase Flows. Computer & Fluids, 27, 663-680.
Xu, C., & Prince, J. L. (1998). Snakes, shapes, and gradient vector flow. IEEE Trans. Image Processing, 7, 359–369.
Xu, C., & Prince, J. L. (1999). http://iacl.ece.jhu.edu/projects/gvf/
Yezzi, A. Jr., Kichenassamy S., Kumar, A., Olver, P. & Tannenbaum, A. (1997). A Geometric Snake Model for Segmentation of Medical Imagery. IEEE Transactions on Medical Imaging, 16, 199-209.
Zijdenbos, A.P., Dawant, B.M., Margolin, R.A., & Palmer, A.C. (1994). Morphometric analysis of white matter lesions in MR images: Method and validation. IEEE Transactions on Medical Imaging, 13, 716-724.
王菘義,(民96) 以磁振造影為基礎的立體舌頭圖譜之建構,國立中央大學電機系碩士論文
何易展,(民90) 細胞顯微影像之分割、追蹤與運動分析,國立成功大學資訊工程系碩士論文
何昌憲,(民93) 等位函數法在影像切割之研究,國立交通大學資訊科學系碩士論文
吳漢哲,(民93) 口腔核磁共振影像的分割與三維灰階值內插,國立中央大學電機系碩士論文
李俞融,(民93) 以適應性多重等階集合法做彩色影像分割,國立中央大學資訊工程系碩士論文
張家榮,(民89) 使用等高集合法對多目標移動物追蹤之研究,元智大學電機工程系碩士論文
游景皓,(民94) 以等位函數法模擬三維潰壩流,逢甲大學水利工程系碩士論文
蔡孟修,(民94) 基於等位函數法之運動物體偵測與追蹤,國立交通大學電子工程系碩士論文