跳到主要內容

簡易檢索 / 詳目顯示

研究生: 李俊逸
Chun-Yi Lee
論文名稱: Electron-induced diffusion within astrophysical layered ices
指導教授: 陳俞融
Yu-Jung Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 31
中文關鍵詞: 星際混和冰晶電子照射實驗擴散作用
外文關鍵詞: Interstellar ice mixture, Electron irradiation, Diffusion
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在分子雲當中,宇宙冰晶常常會形成雙層結構,由CO:CH3OH的混和冰晶覆蓋
    在H2O:NH3:CH4混和冰晶之上。在寒冷的星際環境中熱擴散作用十分微弱,而無處不
    在的宇宙射線顯得格外重要,宇宙射線除了會引發的化學反應和分子脫附作用外,輻
    射誘導的擴散作用更會使得冰晶分子的距離縮短並促進化學反應。在本研究中我們使
    用1 keV和2 keV的電子照射雙層冰混合物。底層中的13CH4作為示蹤劑用來生成13CO。
    隨著照射時間的增加,底層的產物擴散到覆蓋層中,導致13CO的脫附比例逐漸增加。
    我們透過線性擬合中期的13CO脫附比例,估算定義出擴散時間和擴散距離,並根據布
    朗運動中的擴散時間和擴散距離關係式評估出擴散係數。從我們的實驗結果顯示,使
    用較高能量的電子照射會導致較大的擴散係數,然而,比較X-ray與電子照射下的擴散
    係數時,2 keV電子仍然會低於X射線源(250-1250 eV),這是由於X射線具有較高的穿透
    力並在下層冰晶中產生大量的二次電子使下層產物的擴散作用更為旺盛。這一系列的
    實驗驗證了輻射誘導在雙層冰混合物中發生的擴散現象,同時也能評估冰晶的擴散係
    數。在未來,這方面的研究仍需要更深入探討其擴散過程的機制以及會影響擴散係數
    的因素,像是下層所進行化學反應時造成的熱,或是上層冰晶不同裂解效率的影響。


    In molecular clouds, the icy mantles are anticipated to form a bi-layered structure,
    CO:CH3OH/H2O:NH3:CH4 (Ciaravella et al. 2020 [1]). Cosmic rays, which are ubiquitous, stimulate various chemical reactions and molecular desorption. In the cold interstellar environment, radiation-induced diffusion is crucial for bringing molecules closer
    together and facilitating chemical reactions, rather than relying on thermal diffusion. In
    this study, we irradiated the bi-layered ice mixtures with 1 keV and 2 keV electrons. The
    13CH4 in the bottom layer was used as a tracer to produce 13CO. As the irradiation time
    increased, the products in the bottom layer diffused deeper into the cap layer, resulting in
    a gradual increase in the fraction of 13CO. The desorption signals of 13CO were linearly
    fitted to calculate the diffusion time and length. Our results revealed that the diffusion
    coefficient in the 2 keV experiments was nearly 50% higher than in the 1 keV experiments,
    indicating that higher energy electrons result in higher diffusion coefficients. However, the
    diffusion coefficient in 2 keV electron irradiation was still approximately three orders of
    magnitude lower than in X-ray sources (250-1250 eV) due to the higher penetrative power
    and secondary electron generation by X-rays inside the bottom layer. These experiments
    unveiled the electron-induced diffusion in bi-layered ice mixtures. Further investigations
    are needed to delve deeper into the mechanisms underlying this diffusion process, including the role of chemical reaction in bottom and a simpler, more controlled environment
    in the cap layer.

    Contents 摘要i Abstract ii Contents iv List of Figures v 1 Introduction 1 2 Experiments 3 2.1 Experimental setup and procedure . . . . . . . . . . . . . . . . . . . . . . 3 2.2 Ice sample – bi-layered ice mixture . . . . . . . . . . . . . . . . . . . . . . 5 2.2.1 Infrared spectroscopy-based column density measurement of condensed samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2.2 Calculation of diffusion distance in the bi-layered ice . . . . . . . . 7 2.3 Procedure of diffusion experiments with bi-layered ice mixture . . . . . . . 8 3 Results and Discussion 9 3.1 Electron irradiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.1.1 Infrared spectrum of bi-layered ice mixture under electron irradiation 9 3.1.2 Desorption of labeled products from the bottom layer ice . . . . . . 11 3.2 Estimation of diffusion time and length . . . . . . . . . . . . . . . . . . . . 12 3.3 Diffusion coefficient with different energy levels . . . . . . . . . . . . . . . 14 3.4 The competition between peeling and diffusion . . . . . . . . . . . . . . . . 16 4 Conclusion 18 Reference 20

    [1] A. Ciaravella, G. M. Mu˜noz Caro, A. Jim´enez-Escobar, C. Cecchi-Pestellini, L.-C.
    Hsiao, C.-H. Huang, and Y.-J. Chen, “X-ray processing of a realistic ice mantle can
    explain the gas abundances in protoplanetary disks,” Proceedings of the National
    Academy of Sciences, vol. 117, no. 28, pp. 16149–16153, 2020.
    [2] C.-H. Huang, A. Ciaravella, C. Cecchi-Pestellini, A. Jim´enez-Escobar, L.-C. Hsiao,
    C.-C. Huang, P.-C. Chen, N.-E. Sie, and Y.-J. Chen, “Effects of 150–1000 ev electron
    impacts on pure carbon monoxide ices using the interstellar energetic-process system
    (ieps),” The Astrophysical Journal, vol. 889, no. 1, p. 57, 2020.
    [3] P. Ehrenfreund and W. Schutte, “Iso observations of interstellar ices: Implications for
    the pristinity of comets,” Advances in Space Research, vol. 25, no. 11, pp. 2177–2188,
    2000.
    [4] A. A. Boogert, P. A. Gerakines, and D. C. Whittet, “Observations of the icy universe,” Annual Review of Astronomy and Astrophysics, vol. 53, pp. 541–581, 2015.
    [5] K. I. Oberg, A. A. Boogert, K. M. Pontoppidan, S. Van den Broek, E. F. ¨
    Van Dishoeck, S. Bottinelli, G. A. Blake, and N. J. Evans, “The spitzer ice legacy:
    Ice evolution from cores to protostars,” The Astrophysical Journal, vol. 740, no. 2,
    p. 109, 2011.
    [6] P. Ehrenfreund, A. Boogert, P. Gerakines, A. Tielens, and E. Van Dishoeck, “Infrared
    spectroscopy of interstellar apolar ice analogs,” Astronomy and Astrophysics, v. 328,
    p. 649-669 (1997), vol. 328, pp. 649–669, 1997.
    [7] R. Mart´ın-Dom´enech, P. Maksiutenko, K. I. Oberg, and M. Rajappan, “Exploring ¨
    the chemistry induced by energetic processing of the h2-bearing, co-rich apolar ice
    layer,” The Astrophysical Journal, vol. 902, no. 2, p. 116, 2020.
    [8] H. Cuppen, E. Van Dishoeck, E. Herbst, and A. Tielens, “Microscopic simulation
    of methanol and formaldehyde ice formation in cold dense cores,” Astronomy &
    Astrophysics, vol. 508, no. 1, pp. 275–287, 2009.
    20[9] K.-J. Chuang, G. Fedoseev, S. Ioppolo, E. Van Dishoeck, and H. Linnartz, “Hatom addition and abstraction reactions in mixed co, h 2 co and ch 3 oh ices–an
    extended view on complex organic molecule formation,” Monthly Notices of the Royal
    Astronomical Society, vol. 455, no. 2, pp. 1702–1712, 2016.
    [10] R. T. Garrod, “Three-dimensional, off-lattice monte carlo kinetics simulations of
    interstellar grain chemistry and ice structure,” The Astrophysical Journal, vol. 778,
    no. 2, p. 158, 2013.
    [11] I. R. Cooke, K. I. Oberg, E. C. Fayolle, Z. Peeler, and J. B. Bergner, “Co diffusion ¨
    and desorption kinetics in co2 ices,” The Astrophysical Journal, vol. 852, no. 2, p. 75,
    2018.
    [12] K. A. Gadallah, D. Marchione, S. P. Koehler, and M. R. McCoustra, “Molecular
    hydrogen production from amorphous solid water during low energy electron irradiation,” Physical Chemistry Chemical Physics, vol. 19, no. 4, pp. 3349–3357, 2017.
    [13] N. G. Petrik, R. J. Monckton, S. P. Koehler, and G. A. Kimmel, “Electron-stimulated
    reactions in layered co/h2o films: Hydrogen atom diffusion and the sequential hydrogenation of co to methanol,” The Journal of Chemical Physics, vol. 140, no. 20,
    2014.
    [14] S. Pilling, W. Rocha, F. Freitas, and P. Da Silva, “Photochemistry and desorption induced by x-rays in water rich astrophysical ice analogs: implications for the
    moon enceladus and other frozen space environments,” RSC advances, vol. 9, no. 49,
    pp. 28823–28840, 2019.
    [15] A. Jim´enez-Escobar, A. Ciaravella, C. Cecchi-Pestellini, G. M. M. Caro, C.-H. Huang,
    N.-E. Sie, and Y.-J. Chen, “X-ray-induced diffusion and mixing in layered astrophysical ices,” The Astrophysical Journal, vol. 926, no. 2, p. 176, 2022.
    [16] K. I. Oberg, G. W. Fuchs, Z. Awad, H. J. Fraser, S. Schlemmer, E. F. Van Dishoeck, ¨
    and H. Linnartz, “Photodesorption of co ice,” The Astrophysical Journal, vol. 662,
    no. 1, p. L23, 2007.
    [17] Y.-J. Chen, K.-J. Chuang, G. M. Caro, M. Nuevo, C.-C. Chu, T.-S. Yih, W.-H. Ip,
    and C.-Y. Wu, “Vacuum ultraviolet emission spectrum measurement of a microwavedischarge hydrogen-flow lamp in several configurations: Application to photodesorption of co ice,” The Astrophysical Journal, vol. 781, no. 1, p. 15, 2013.
    [18] N.-E. Sie, G. M. Caro, Z.-H. Huang, R. Mart´ın-Dom´enech, A. Fuente, and Y.-J.
    Chen, “On the photodesorption of co2 ice analogs: The formation of atomic c in the
    ice and the effect of the vuv emission spectrum,” The Astrophysical Journal, vol. 874,
    no. 1, p. 35, 2019.
    21[19] L. d’Hendecourt and L. Allamandola, “Time dependent chemistry in dense molecular clouds. iii-infrared band cross sections of molecules in the solid state at 10 k,”
    Astronomy and Astrophysics Supplement Series (ISSN 0365-0138), vol. 64, no. 3,
    June 1986, p. 453-467., vol. 64, pp. 453–467, 1986.
    [20] W. Hagen, A. Tielens, and J. Greenberg, “The infrared spectra of amorphous solid
    water and ice ic between 10 and 140 k,” Chemical Physics, vol. 56, no. 3, pp. 367–379,
    1981.
    [21] G. J. Jiang, W. B. Person, and K. G. Brown, “Absolute infrared intensities and band
    shapes in pure solid co and co in some solid matrices,” The Journal of Chemical
    Physics, vol. 62, no. 4, pp. 1201–1211, 1975.
    [22] M. Bouilloud, N. Fray, Y. B´enilan, H. Cottin, M.-C. Gazeau, and A. Jolly, “Bibliographic review and new measurements of the infrared band strengths of pure
    molecules at 25 k: H2o, co2, co, ch4, nh3, ch3oh, hcooh and h2co,” Monthly Notices
    of the Royal Astronomical Society, vol. 451, no. 2, pp. 2145–2160, 2015.
    [23] C. J. Bennett and R. I. Kaiser, “On the formation of glycolaldehyde (hcoch2oh) and
    methyl formate (hcooch3) in interstellar ice analogs,” The Astrophysical Journal,
    vol. 661, no. 2, p. 899, 2007.
    [24] L. Stief, V. Decarlo, and J. Hillman, “Vacuum-ultraviolet photochemistry. ii. solidand gas-phase photolysis of methane—water systems,” The Journal of Chemical
    Physics, vol. 43, no. 7, pp. 2490–2496, 1965.
    [25] L. Krim and M. Jonusas, “Vuv photolysis of ch4–h2o mixture in methane-rich ices:
    Formation of large complex organic molecules in astronomical environments,” Low
    Temperature Physics, vol. 45, no. 6, pp. 606–614, 2019.
    [26] H. Demers, N. Poirier-Demers, A. R. Couture, D. Joly, M. Guilmain, N. de Jonge,
    and D. Drouin, “Three-dimensional electron microscopy simulation with the casino
    monte carlo software,” Scanning, vol. 33, no. 3, pp. 135–146, 2011.
    [27] M. Bertin, E. C. Fayolle, C. Romanzin, K. I. Oberg, X. Michaut, A. Moudens, ¨
    L. Philippe, P. Jeseck, H. Linnartz, and J.-H. Fillion, “Uv photodesorption of interstellar co ice analogues: from subsurface excitation to surface desorption,” Physical
    Chemistry Chemical Physics, vol. 14, no. 28, pp. 9929–9935, 2012.
    [28] P. Ghesquiere, T. Mineva, D. Talbi, P. Theul´e, J. Noble, and T. Chiavassa, “Diffusion
    of molecules in the bulk of a low density amorphous ice from molecular dynamics
    simulations,” Physical Chemistry Chemical Physics, vol. 17, no. 17, pp. 11455–11468,
    2015.
    22[29] B. L. Henke, E. M. Gullikson, and J. C. Davis, “X-ray interactions: photoabsorption,
    scattering, transmission, and reflection at e= 50-30,000 ev, z= 1-92,” Atomic data
    and nuclear data tables, vol. 54, no. 2, pp. 181–342, 1993.
    [30] P. Gerakines, W. Schutte, J. Greenberg, and E. F. van Dishoeck, “The infrared band
    strengths of h2o, co and co2 in laboratory simulations of astrophysical ice mixtures,”
    arXiv preprint astro-ph/9409076, 1994.
    [31] A. Ciaravella, A. Jim´enez-Escobar, C. Cecchi-Pestellini, C. Huang, N. Sie, G. M.
    Caro, and Y. Chen, “Synthesis of complex organic molecules in soft x-ray irradiated
    ices,” The Astrophysical Journal, vol. 879, no. 1, p. 21, 2019.
    [32] E. C. Fayolle, M. Bertin, C. Romanzin, X. Michaut, K. I. Oberg, H. Linnartz, ¨
    and J.-H. Fillion, “Co ice photodesorption: a wavelength-dependent study,” The
    Astrophysical journal letters, vol. 739, no. 2, p. L36, 2011.

    QR CODE
    :::