| 研究生: |
楊士鋒 Shih-Feng Yang |
|---|---|
| 論文名稱: |
流體化床鍋爐燃煤飛灰與混燒飛灰卜作嵐特性比較之研究-以紡織汙泥為例 |
| 指導教授: |
黃偉慶
Wei-Hsing Huang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 181 |
| 中文關鍵詞: | 循環式流體化床鍋爐 、混燒 、飛灰 、底灰 、資源化再利用 |
| 外文關鍵詞: | Circulating Fluidized bed boiler, Co-combustion, Fly ash, Bottom ash, Reuse and recycling |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究針對國內某設有循環式流體化床鍋爐之紡織廠,以使用生質事業廢棄物部分取代燃煤作為燃料,將燃煤與紡織汙泥混合燃燒發電,而所衍生之灰渣需掌握其材料特性,以利發展資源化再利用方法。本研究選定流體化床鍋爐灰渣燃燒前之燃料種類包括:(1)煙煤純燒、(2)煙煤與紡織汙泥混燒;為探討混燒飛灰之穩定性,混燒飛灰另取兩批次;共三批次進行試驗,並根據相關規範進行試驗,將研究材料與電廠粉煤鍋爐之飛灰比較。上述材料皆針對混凝土材料相關之物理性質及化學性質試驗,探討其材料特性並建立混燒灰渣之基線資料。
研究結果顯示材料流體化床鍋爐飛灰之特色為細度甚大,並且鍋爐燃燒參數與傳統鍋爐有異,造成飛灰材料性質上的差異;鍋爐燃燒溫度低使飛灰並未出現高溫燒結之礦物,導致流體化床鍋爐飛灰中鋁成分的活性較高;且鍋爐燃燒使用石灰石作為脫硫劑導致飛灰內含有石膏之成分。上述特性使飛灰與水泥摻配之早期強度提高,但也帶來耐久性的隱憂。而鍋爐燃燒參數上的差異與輔助燃料的添加對飛灰性質也有一定的影響。
再利用試驗結果顯示:通過用水量調整可使CLSM與飛灰混凝土的工作性質達到規定,流體化床鍋爐灰渣可大量用於CLSM達到消耗的目的,但將飛灰用於混凝土卻仍有耐久性的問題,因此建議使用在非結構性的混凝土製品方面。
A domestic textile mill generates electricity through co-combustion of coal and textile sludge in order to replace coal with biomass industrial waste as fuel. This study, based on the ash produced by the circulating fluidized bed boiler(CFB) in this mill, aims to investigate the material properties of ashes produced by co-firing coal and textile sludge. Two types of fuel materials are selected, they are bituminous coal and a mixture of bituminous coal and textile sludge. To study the stability of fly ash generated from co-combustion, three batches are tested following the current specification. The research material will be compared with the fly ash produced by a boiler in a coal-fired power station. To explore the material properties and construct the baseline data of ash from co-combustion, all research materials undergo tests of both physical and chemical properties.
Since CFB adopts different burning parameters and lower burning temperature, and uses limestone as sulfur-scrubbing admixture, research results show that the fly ash produced by CFB is characterized by a high fineness, with the presence of anhydrite and active aluminum. These properties result in a higher pozolanic activity when blended with cement at an early age, but engender an issue of durability.
In the experiments on utilization of fly ash as construction materials, results show that adjusting the amount of water will make workability of CLSM and fly ash concrete in accordance with current specification. To consume the fly ash, it could be used in a large amount on CLSM. Since the concrete manufactured using CFB fly ash exhibits poor resistance to sulfur, it is recommended that the use of CFB fly ash be limited to making concrete products.
王銘澤,「生質燃料鍋爐飛灰與底渣特性分析及再利用評估」,碩士論文,國立中央大學,桃園,2017。
蕭柏洋,「生質燃料灰渣汁再利用與在處理方法探討」,碩士論文,國立中央大學,桃園2018。
張慶源、李元陞、吳照雄、林法勤、謝哲隆、陳奕宏、張家驥,生質燃料應用評估與示範,行政院環境保護署環境檢驗所,2013。
經濟部,https://www.moea.gov.tw/Mns/populace/home/Home.aspx
行政院環保署事業廢棄物申報及管理資訊系統,https://waste.epa.gov.tw/prog/IndexFrame.asp。
萬皓鵬.李宏台,廢棄物衍生燃料的使用,2010。
黨輝,王洪昇,黃紅,楊愛麗,「循環流化床脫硫灰渣的特性及應用初探 」,環保技術,中國,2004。
朱尚文,「循環流化床固硫灰特性及做水泥混合材應用的研究」,中國建築材料科學研究總院碩士論文,2011。
徐登文,「燃煤飛灰與底灰應用於CLSM之早強性質研究」,碩士論文,國立中興大學,台中,2002。
魏存弟、杨殿范、李益、三国彰,「煅烧温度对高岭石相转变过程及Si、Al活性的影响」,礦物學報,第三期,574-578,2005。
CNS3036飛灰混凝土用飛灰及天然或鍛燒卜作嵐攙和物。
黃兆龍,「卜作嵐混凝土使用手冊」,2007。
黃兆龍,「混凝土性質和行為」,詹式出版社,1999。
“水利工程構造物混凝土施工規範研究成果報告”,經濟部水利署,2012。
許俊傑,”套討高飛灰含量混凝土之物理性與耐久性”,正修科技大學營建工程研究所,碩士論文,高雄,2012。
蘇冠宇,”高飛輝摻量混凝土之工程性質研究”,中興大學土木研究所,碩士論文,台中,2011。
行政院公共工程委員會, ”公共工程飛灰混凝土使用手冊”,1999。
紀宗男,「淨水污泥餅資源化應用於管溝回填材料之研究」,碩士論文,淡江大學,台北,2003。
余岳峰,「下水污泥焚化灰渣燒成輕質粒料特性之研究」,碩士論文,國立中央大學環境工程研究所,桃園,2000。
台灣省鍋爐協會,特種機械設備安全,第33期,2014。
台灣電力股份有限公司,「高飛灰摻量混凝土產製技術與應用研究完成報告」,2011。
林耀聖,「產業污泥成型燃料化與灰渣卜作嵐特性研究」,碩士論文,桃園創新技術學院,桃園,2012
歐陽橋輝,許鎮龍,藍文忠,「都市汙水處理廠汙泥處理與資源化再利用之研究」,第八屆下水道技術研討會論文集,19-23,1998。
經濟部工業局,「研析鍋爐一般性飛灰及底渣混合物資源化可行技術」,2016。
錢覺時、鄭洪偉、王智、宋遠明、楊娟,「流化床燃煤固硫灰渣活性評定方法」,煤炭學報(Journal of China Coal Society),第31卷,第四期,506-510,2006。
馬志斌、常可可、燕可洲、張培華、程芳琴,「不同負荷下循環流化床鍋爐粉煤灰的理化性質研究」,潔淨煤技術(Clean Coal Technology),第22卷,第四期,20~25,2016。
行政院公共工程委員會,「高煤灰量控制性低強度回填材料」,施工綱要規範03377A章,2017。
Naik, T.R., Kraus, R.N., and Siddique, R., “CLSM containing mixture of coal ash and a new pozzolanic material.” ACI Mater J, Vol. 100, pp. 208-215., 2003.
Rajamma, R., Bell, R.J., Tarelho, L.A.C., Allen, G.C., Labrincha, J.A., and Ferreira, V.M., “Characterisation and use of biomass fly ash in cement-based materials.”Journal of Hazardous Materials, Vol.172, pp. 1049-1060., 2009.
Cuenca, J., Rodriguez, J., Martin-Morales, M., Sanchez-Roldan, Z., and Zemorano, M., “Effects of olive residue biomass fly ash as filler in self-compacting concrete.” Construction and Building Materials, Vol. 40, pp. 702-709., 2013.
Sujivorakul, C., Jaturapitakkul, C., ASCE, A.M., and Taotip, A., “Utilization of Fly Ash, Rice Husk Ash, and Palm Oil Fuel Ash in Glass Fiber–Reinforced Concrete.” Journal of Materials in Civil Engineering, Vol.23, pp. 1281-1288., 2011.
Johari, M.A.M., Zeyad, A.M., Bunnori, N.M., and Ariffin, K.S., “Engineering and transport properties of highstrength green concrete containing high volume of ultrafine palm oil fuel ash.” Construction and Building Materials, Vol. 30, pp. 281-288., 2012.
Lim, N.H.A.S., Ismail, M.A, Lee, H.S., Hussin, M.W., Sam, R.M., and Samadi, M., “The effects of high volume nano palm oil fuel ash on microstructure properties and hydration temperature of mortar.” Construction and Building Materials, Vol. 93, pp. 29-34., 2015.
Abdullahi, M., “Characteristics of Wood ASH/OPC Concrete.” Civil Engineering Department, Federal University of Technology, P.M.B. 65., 2006.
G.Yue, W.Li, Y.Wu, J.Lu, D.Che, “Structure and performance of a 600 MW supercritical CFB boiler with water cooled panels”., Proceedings of the 20th international conference on fluidized bed combustion., 2010.
M.Y.Tsai, K.T.Wu, C.C.Huang, H.T.Lee, “Co-firing of paper mill sludge and coal in an industrial circulating fluidized bed boiler”., 2002.
Yann-Hwang Wu, Ran Huang, Chia-Jung Tsai, Wei-Ting Lin, “Utilizing residues of CFB co-combustion of coal, sludge and TDF as an alkali activator in eco-binder”., 2015.
Sheng G, Zhai J, Li Q, Li F. Utilization of fly ash coming from a CFBC boiler co-firing coal and petroleum coke in Portland cement. Fuel; 86: 2625-31., 2007.
R.E.Conn, K.Sellakumar, “Utilization of CFB Fly Ash for Construction Application, Proceedings of the 15th International conference on Fluidized Bed Combustion” , 1999.
Xu, G.R., Zou, J.L., G., B., “Ceramsite Made with Water and Wastewater Sludge And its Characteristics Affected by SiO2 and Al2O3” ,Environmental Science and Technology. 42:7417-7423., 2008.
Xu, G.R., Zou, J.L., G., B., “Effect of sintering temperature on the characteristics of sludge ceramsite” ,Journal of Hazardous Materials. 150:394-400., 2008.
Riley, C. M., “Association of chemical process to the bloating clay” ,Journal of American Ceramic Scission. 34(4):121-128., 1951.
Ducman, V., and Mirtic, B., “The applicability of different waste materials for the production of lightweight aggregates”, Waste Mannagement. 29:2361-2368., 2009.
Rajamma, R., Bell, R.J., Tarelho, L.A.C., Allen, G.C., Labrincha, J.A., and Ferreira, V.M., “Characterisation and use of biomass fly ash in cement-based materials.”Journal of Hazardous Materials, Vol.172, pp. 1049-1060., 2009.
Naik, T.R., Kraus, R.N., and Siddique, R., “CLSM containing mixture of coal ash and a new pozzolanic material.” ACI Mater J, Vol. 100, pp. 208-215., 2003.
Marcucci, M., Nosenzo, G., Capannelli, G., Ciabatti, I., Corrieri, D., Ciardelli, G., Treatment and reuse of textile effluents based on new ultrafiltration and other membrane technologies. Desalination 138, 75e82., 2001.
Pettersson A, Zevenhoven M, Steenari B-M, Amand L-E. Application of chemical fractionation methods for characterisation of biofuels, waste derived fuels and CFB co-combustion fly ashes. Fuel; 87:3183–93., 2008.
Vassilev, S. V., Baxter, D., Andersen, L. K. & Vassileva, C. G., An overview of the chemical composition of biomass. Fuel 89, 913–933., 2010.
F.S.A., Araujo., R.T.R., Monteiro., Microbial biomass and activity in a Brazilian soil amended with untreated and composted textile sludge, Chemosphere 64, 1043-1046, 2006.
J, Balasubramanian., C, PC Sabumon., U, J, Lazar., R, Ilangovan., Reuse of textile effluent treatment plant sludge in building materials, Waste Management, 26, 22-28, 2006.
Bhatty, J.I., and K.J. Reid,. “Compressive Strength of Municipal Sludge Ash mortars. ” ACI Materials J., Vol.86, pp.394-400, 1989.
Tay, J.H., and K.Y. Show., “Reuse of Wastewater Sludge in Manufacturingnon-Conventional Construction Materials – an Innovative Approach Toultimate Sludge Disposal.” Water Science and Technology, Vol.26, pp.1165-1174, 1992.
Tay, J.H., and W.K. Yip, “Sludge Ash as Lightweight Concrete Material,” J. Environmental Engineering, ASCE, Vol.115, pp.56-64 ,1989.
SCRIVENER K L. Advanced Concrete Technology: constituent materials [M]. Oxford: Elsevier, 2003.
Xu Linglin, Wang Peiming, Zhang Guofang and Geert De Schutter (UGent), “Mechanism of calcium sulfate variety on strength of portland cement-calcium aluminate cement blends”
JOURNAL OF THE CHINESE CERAMIC SOCIETY = GUISUANYAN XUEBAO. 41(11)., p.41-48, 2013.
Nazari A, Riahi Sh, Riahi Sh, Shamekhi SF, Khademno A. Influence of Al2O3 nanoparticles on the compressive strength and workability of blended concrete. J Am Sci; 6(5):6–9., 2010.
LIU Guanghua, ZHANG Jinsheng. Durability of calcium aluminate cement and Portland cement blends [C]// The 2nd conference on the production and application of Chinese dry-mix mortar used in building, Beijing: 83–88., 2006 (in Chinese).
S.N. Ghosh, ”CEMENT AND CONCRETE SCIENCE AND TECHNOLOGY, ” Thomas Telford, india, pp. 263-267, 1991.
S.U. Muzhen, WANG Yanmou, ZHANG Liang. “Calcium sulfoaluminate cement[M].” Beijing, Beijing University of Technology Press, 1999(in Chinese).