| 研究生: |
黃凱麟 Kai-Lin Huang |
|---|---|
| 論文名稱: |
氮化物表面電漿生醫感測之理論分析 Theoretical Analyses on Nitride-based Surface Plasmon Resonance Biosensors |
| 指導教授: |
賴昆佑
Kun-Yu Lai |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 72 |
| 中文關鍵詞: | 表面電漿 、氮化鎵 |
| 外文關鍵詞: | Surface Plasmon, GaN |
| 相關次數: | 點閱:18 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
表面電漿共振是存在於金屬與介電物質介面處的表面電磁波,近年來表面電漿共振的特性,已被大幅應用在生醫檢測技術。表面電漿共振生醫感測是屬於光學式的量測方式,對金屬/介電質界面的折射率變化具備超高的敏感度,藉此我們可以判定表面待測物質的濃度變化。
本研究以氮化物為介電質,搭配銀薄膜以形成表面電漿結構,並利用理論分析的方式,探究氮化物表面電漿結構在生醫感測上的應用潛力。與傳統常用的稜鏡相較,氮化物(GaN或InGaN)具備更高的折射率、更高的化學穩定度。而氮化銦鎵(InGaN)量子井所產生的光子,非常適合當作表面電漿效應的增益介質(Gain Medium),可增加感測元件的靈敏度。此外,氮化物的磊晶方式,可輕易形成大面積分布的奈米結構,有助於產生單分子偵測所需的表面拉曼散射增強效應(surface enhanced Raman scattering, SERS)。我們利用模擬的方式,觀察其氮化物表面電漿的強度變化,並藉此說明氮化物表面電漿結構在生物檢測應用上的優勢。
Surface plasmon resonance (SPR) is the collective electron oscillation at the interface of metal and dielectric material. The SPR effect is highly sensitive to the change of surface refractive index, and therefore can be used to detect biomolecular binding events between the antibody and the antigen.
In this research, we present theoretical analyses on the potential of nitride-based SPR structure in biosensing applications. The SPR effect is achieved with a GaN/InGaN/GaN quantum well and a thin Ag layer, and the change in surface refractive index is detected by the varied emission intensity from the quantum well. The nitride epilayers were grown with metal-organic chemical vapor deposition (MOCVD). The MOCVD technique can easily produce wafer-scale nanostructures that are suitable for single-molecule detection with the surface enhanced Raman scattering (SERS) effect. With the calculated dispersion curves and the penetration depths estimated by the finite-difference time-domain method, we demonstrate the advantages of this novel SPR biosensing structure, which are not attainable with the conventional Kretschmann configuration.
[1] H. Raether, et al. Surface Plasmons On Smooth And Rough Surfaces And On Gratings. (Springer Berlin Heidelberg, 1988).
[2] A. Zayats, et al. "Nano-optics of surface plasmon polaritons." Physics Reports 408, 131-314 (2005).
[3] C. Bohren, et al. Absorption And Scattering Of Light By Small Particles. (Wiley, New York [Etc.], 2013).
[4] J. Mock, et al. "Shape effects in plasmon resonance of individual colloidal silver nanoparticles." The Journal of Chemical Physics 116, 6755-6759 (2002).
[5] D. Schultz, et al. "Plasmon resonant particles for biological detection." Current Opinion in Biotechnology 14, 13-22 (2003).
[6] S. Sabban, et al. "Development of an in vitro model system for studying the interaction of Equus caballus IgE with its high-affinity receptor FcɛRI." Veterinary Immunology and Immunopathology 153, 10-16 (2013).
[7] H. Otte, et al. "Crystallographic Formulae for Hexagonal Lattices." Physica Status Solidi (b) 9, 441-450 (1965).
[8] C. Palache, et al. Elements, Sulfides, Sulfosalts, Oxides. (Wiley & Sons, New York, 1944).
[9] S. Zhao, et al. "Mechanism of improving forward and reverse blocking voltages in AlGaN/GaN HEMTs by using Schottky drain." Chinese Physics B 23, 107303 (2014).
[10] R. Thapa, et al. "Biofunctionalized AlGaN/GaN high electron mobility transistor for DNA hybridization detection." Applied Physics Letters 100, 232109 (2012).
[11] E. Hecht, Optics. (Addison-Wesley, San Francisco, 2002).
[12]吳民耀、劉威志,"表面電漿子理論與模擬",物理雙月刊,28,486 (2006).
[13]邱國斌、蔡定平,"金屬表面電漿簡介",物理雙月刊,28,472 (2006).
[14] A. Otto, et al. "Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection." Zeitschrift für Physik A Hadrons and nuclei 216, 398-410 (1968).
[15] E. Kretschmann, et al. "Die Bestimmung optischer Konstanten von Metallen durch Anregung von Oberflächen plasma schwingungen." Zeitschrift für Physik A Hadrons and nuclei 241, 313-324 (1971).
[16] S. Zeng, et al. "A Review on Functionalized Gold Nanoparticles for Biosensing Applications." Plasmonics 6, 491-506 (2011).
[17] R. Oulton, et al. "Plasmon lasers at deep subwavelength scale." Nature 461, 629-632 (2009).
[18] R. Ma,, et al. "Room-temperature sub-diffraction-limited plasmon laser by total internal reflection." Nature Materials 10, 110-113 (2010).
[19] C. Zhang, et al. "High-Performance Doped Silver Films: Overcoming Fundamental Material Limits for Nanophotonic Applications." Advanced Materials 29, 1605177 (2017).
[20] K. McPeak, et al. "Plasmonic Films Can Easily Be Better: Rules and Recipes." ACS Photonics 2, 326-333 (2015).
[21] T. Kawashima, et al. "Optical properties of hexagonal GaN." Journal of Applied Physics 82, 3528-3535 (1997).
[22] SCHOTT optical glass data sheets (2015). (https://refractiveindex.info/download/data/2015/schott-optical-glass-collection-datasheets-july-2015-us.pdf)
[23] V. Komarala, et al. "Dependence of metal layer thickness and dielectric material." Journal of Applied Physics 107, 014309 (2010).
[24] C. Zhang, et al. "High-Performance Doped Silver Films: Overcoming Fundamental Material Limits for Nanophotonic Applications." Advanced Materials 29, 1605177 (2017).
[25] A. Rakić, et al. "Algorithm for the determination of intrinsic optical constants of metal films: application to aluminum." Applied Optics 34, 4755 (1995).
[26] P. Johnson, et al. "Optical Constants of the Noble Metals." Physical Review B 6, 4370-4379 (1972).
[27] I. Gontijo, et al. "Coupling of InGaN quantum-well photoluminescence to silver surface plasmons." Physical Review B 60, 11564-11567 (1999).
[28] S. Maegawa, et al. "In situ observation of adsorbed fatty acid films using surface plasmon resonance." Tribology International 97, 228-233 (2016).
[29] N. Chiu, et al. "Graphene Oxide Based Surface Plasmon Resonance Biosensors." Advances in Graphene Science (2013).
[30] P. Lorrain, F. Lorrain and D. Corson, Electromagnetic Fields And Waves. (Freeman, New York, N.Y., 1987).
[31] J. Reitz, et al. Foundations Of Electromagnetic Theory. (Pearson Education, Inc., Sin Lugar, 1993).
[32]H. Gwon, et al. "Spectral and Angular Responses of Surface Plasmon Resonance Based on the Kretschmann Prism Configuration." Materials Transactions 51, 1150-1155 (2010).
[33] A. Taflove, et al. Computational Electrodynamics. (Artech House, Boston, Mass. [U.A.], 2010).
[34] J. Kottmann, et al. "Plasmon resonant coupling in metallic nanowires." Optics Express 8, 655 (2001).
[35] J. Kottmann, et al. "Retardation-induced plasmon resonances in coupled nanoparticles." Optics Letters 26, 1096 (2001).
[36] E. Blackie, et al. "Single-Molecule Surface-Enhanced Raman Spectroscopy of Nonresonant Molecules." Journal of the American Chemical Society 131, 14466-14472 (2009).
[37] Jiang, et al. "Single Molecule Raman Spectroscopy at the Junctions of Large Ag Nanocrystals." The Journal of Physical Chemistry B 107, 9964-9972 (2003).
[38] J. Hus, et al. "Bottom-Up Nano-heteroepitaxy of Wafer-Scale Semipolar GaN on (001) Si." Advanced Materials 27, 4845-4850 (2015).
[39] R. Wangsness, Electromagnetic Fields. (Wiley, New York, 1986).