跳到主要內容

簡易檢索 / 詳目顯示

研究生: 畢拉爾
Bilal Ramzan
論文名稱: 在宇宙射線和磁流波影響下的 電漿流之理論研究
A Theoretical Study of Outflows in the Presence of Cosmic Rays and Waves
指導教授: 高仲明
Chung-Ming Ko
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 天文研究所
Graduate Institute of Astronomy
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 68
中文關鍵詞: 流體力學等離子體宇宙射線波浪磁場
外文關鍵詞: Hydrodynamics, Plasma, Cosmic rays, Waves, Magnetic field, Winds
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文從流體力學的理論觀點探討宇宙射線對在重力位井裡的電漿流或電漿風的影響。宇宙射線與在電漿裡的磁流擾動發生交互作用。在這個過程中,宇宙射線在電漿裡擴散和流動。除了熱電漿是流體外,在我們的模型中宇宙射線和自激性阿耳芬波也作流體處理。我們研究在位能井的基底有明確邊界條件下的「三流體」系統(含一個向前傳播的阿耳芬波)和「四流體」系統(同時含向前和向後傳播的阿耳芬波)中物理上允許的穩定態解。作為一個參照模型,一個沒有宇宙射線擴散也沒有波阻尼的「三流體」模型可以用如同處理經典帕克恆星風問題的方式研究。在考慮有宇宙射線擴散的情況下,我們發現有兩種類別的結果。一種是相似於沒有擴散的「三流體」模型,而另外一種則會發展成類似一般的純熱風,因為這個類別的波會消退繼而宇宙射線與熱電漿解耦不再有影響力。我們同時也探討冷卻效應對電漿流的效應。冷卻會造成亞音速純熱風失速,因此我們聚焦在亞音速─超音速過渡或是穿音速解。在相同的邊界條件下,我們比較有無冷卻效應和有無波阻尼的結果。


    The impact of cosmic rays on plasma outflow or wind against a gravitational potential is studied theoretically from the perspective of hydrodynamics in this dissertation.
    Cosmic rays interact with hydromagnetic fluctuations embedded in plasma.
    In this process, cosmic rays diffuse and advect through the plasma.
    In addition to thermal plasma, cosmic rays and self-excited Alfv\'en waves are also considered as fluids in our model.
    We investigate physically allowable steady-state solutions for three-fluid system (with one forward propagating Alfv\'en wave) and four-fluid system (with both forward and backward propagating Alfv\'en waves) with certain boundary conditions at the base of the potential well.
    As a reference model, a three-fluid model without cosmic-ray diffusion and without wave damping can be studied in the same way as the classic Parker stellar wind problem.
    In the presence of cosmic-ray diffusion, we discovered two categories of solutions.
    One is similar to the three-fluid model without diffusion, while the other appears to behave like thermal wind when the waves die out and the cosmic rays become decoupled from the thermal plasma.
    We also examine the effect of cooling on the outflows.
    As cooling causes subsonic pure thermal outflow to stall, we focus on subsonic-supersonic transition or transonic solutions.
    We compare cases with/without cooling and with/without wave damping for the same set of boundary conditions.

    Contents 電子論文授權書 Authorisation of the Electronic Thesis i 指導教授推薦書 Recommendation Letter from the Thesis Advisor iii 口試委員審定書 Verification from the Oral Examination Committee v 英文摘要 Abstract in English vii 中文摘要 ix 誌謝 Acknowledgements xi List of Figures xv 1 Introduction 1 1.1 Cosmic rays discovery . . 1 1.2 Composition of cosmic rays . . 3 1.3 Spectrum of cosmic rays . 4 1.4 Cosmic rays interactions . 5 1.5 Hydrodynamical models . 6 1.6 Outline of the thesis 7 2 Hydrodynamical Model for a Cosmic Ray-Plasma System 9 2.1 Derivation of the cosmic ray energy equation . . 9 2.2 Derivation of the wave energy equation . . 11 2.3 Cosmic ray-plasma system 12 2.4 Flux-tube formulation for outflows . 15 2.5 Wind equation for the four-fluid system . . 18 2.6 Integrals of the system . . 19 3 Three-Fluid Systems without Cosmic-Ray Diffusion 21 3.1 Outflow equation . . 21 3.2 Two special cases . . 22 3.2.1 Solution curves . . 24 3.3 Solutions with different wave damping mechanisms . 26 4 Systems with Cosmic Ray Diffusion 31 4.1 Cosmic ray accompanied outflows . . 32 4.2 Quasi-thermal outflows . . 35 4.2.1 Impact of cosmic rays and waves on the outflow . . 41 5 Outflows with Cooling 45 5.1 Pure thermal outflows . . 46 5.2 Three-fluid outflows without diffusion 48 5.3 Three-fluid outflows with diffusion . . 50 5.4 Four-fluid outflows . 53 6 Summary and Discussion 59 Bibliography 63

    Abbasi R., et al., 2010, Nuclear Instruments and Methods in Physics Research A, 618,139
    Abdo A. A., et al., 2008, Phys. Rev. Lett., 101, 221101
    Barros D. A., Lepine J. R. D., Dias W. S., 2016, Astronomy & Astrophysics, 593, A108
    Breitschwerdt D., McKenzie J. F., Voelk H. J., 1991, Astronomy & Astrophysics, 245, 79
    Breitschwerdt D., McKenzie J. F., Voelk H. J., 1993, Astronomy & Astrophysics, 269, 54
    Bustard C., Zweibel E. G., DOnghia E., 2016, The Astrophysical Journal, 819, 29
    Chin Y.-C., Wentzel D. G., 1972, Astrophysics and Space Science, 16, 465
    Cox D. P., 2005, Annual Review of Astronomy and Astrophysics, 43, 337
    Dewar R. L., 1970, Physics of Fluids, 13, 2710
    Dorfi E. A., Breitschwerdt D., 2012, Astronomy & Astrophysics, 540, A77
    Dor fi E. A., Steiner D., Ragossnig F., Breitschwerdt D., 2019, Astronomy & Astrophysics,
    630, A107
    Drury L. O., Voelk J. H., 1981, The Astrophysical Journal, 248, 344
    Everett J. E., Zweibel E. G., Benjamin R. A., McCammon D., Rocks L., III J. S. G.,
    2008, The Astrophysical Journal, 674, 258
    Farber R., Ruszkowski M., Yang H.-Y. K., Zweibel E. G., 2018, The Astrophysical Journal,
    856, 112
    Ferriere K. M., 2001, Rev. Mod. Phys., 73, 1031
    Gaisser T. K., 2012, Astroparticle Physics, 35, 801
    Ghosh A., Ptuskin V. S., 1983, Astrophysics and Space Science, 92, 37
    Girichidis P., et al., 2016, The Astrophysical Journal, 816, L19
    Hanasz M., Lesch H., 2000, The Astrophysical Journal, 543, 235
    Hanasz M., Lesch H., 2003, Astronomy & Astrophysics, 412, 331
    Heintz E., Zweibel E. G., 2018, The Astrophysical Journal, 860, 97
    Heintz E., Bustard C., Zweibel E. G., 2020, The Astrophysical Journal, 891, 157
    Holguin F., Ruszkowski M., Lazarian A., Farber R., Yang H.-Y. K., 2019, Monthly Notices
    of the Royal Astronomical Society, 490, 1271
    Icecube Collaboration et al., 2012, Nature, 484, 351
    Ipavich F. M., 1975, The Astrophysical Journal, 196, 107
    Ko C. M., 1991, Astronomy & Astrophysics, 242, 85
    Ko C. M., 1992, Astronomy & Astrophysics, 259, 377
    Ko C. M., 2001, Journal of Plasma Physics, 65, 305
    Ko C. M., Lo Y., 2009, The Astrophysical Journal, 691, 1587
    Ko C. M., Jokipii J., Webb G., 1988, The Astrophysical Journal, 326, 761
    Ko C. M., Dougherty M., McKenzie J., 1991, Astronomy & Astrophysics, 241, 62
    Ko C. M., Chan K., Webb G., 1997, Journal of Plasma Physics, 57, 677
    Ko C. M., Ramzan B., Chernyshov D. O., 2021, Astronomy & Astrophysics
    Kulsrud R., Pearce W. P., 1969, ApJ, 156, 445
    Kuwabara T., Ko C. M., 2006, The Astrophysical Journal, 636, 290
    Kuwabara T., Ko C. M., 2015, The Astrophysical Journal, 798, 79
    Kuwabara T., Nakamura K., Ko C. M., 2004, The Astrophysical Journal, 607, 828
    Kuznetsov V. D., Ptuskin V. S., 1983, Astrophysics & Space Science, 94, 5
    Lerche I., 1967, ApJ, 147, 689
    Lo Y., Ko C. M., Wang C., 2011, Comput. Phys. Commun., 182, 177
    Longair M. S., 1994, High energy astrophysics. Vol. 2
    Mao S. A., Ostriker E. C., 2018, The Astrophysical Journal, 854, 89
    McKenzie J. F., Voelk H. J., 1982, Astronomy & Astrophysics, 116, 191
    Parker E. N., 1963, Interplanetary dynamical processes (New York: Interscience).
    Parker E. N., 1965, Space Sci. Rev., 4, 666
    Parker E. N., 1966, The Astrophysical Journal, 145, 811
    Ramzan B., Ko C. M., Chernyshov D. O., 2020, The Astrophysical Journal, 905, 117
    Recchia S., 2020, International Journal of Modern Physics D, 29, 2030006
    Recchia S., Blasi P., Morlino G., 2016, Monthly Notices of the Royal Astronomical Society,
    462, 4227
    Ruszkowski M., Yang H.-Y. K., Zweibel E., 2017, The Astrophysical Journal, 834, 208
    Ryu D., Kang H., Hallman E., Jones T. W., 2003, The Astrophysical Journal, 593, 599
    Skilling J., 1975a, MNRAS, 172, 557
    Ko C. M., Ramzan B., Chernyshov D. O., 2021, Astronomy & Astrophysics
    Kulsrud R., Pearce W. P., 1969, ApJ, 156, 445
    Kuwabara T., Ko C. M., 2006, The Astrophysical Journal, 636, 290
    Kuwabara T., Ko C. M., 2015, The Astrophysical Journal, 798, 79
    Kuwabara T., Nakamura K., Ko C. M., 2004, The Astrophysical Journal, 607, 828
    Kuznetsov V. D., Ptuskin V. S., 1983, Astrophysics & Space Science, 94, 5
    Lerche I., 1967, ApJ, 147, 689
    Lo Y., Ko C. M., Wang C., 2011, Comput. Phys. Commun., 182, 177
    Longair M. S., 1994, High energy astrophysics. Vol. 2
    Mao S. A., Ostriker E. C., 2018, The Astrophysical Journal, 854, 89
    McKenzie J. F., Volk H. J., 1982, Astronomy & Astrophysics, 116, 191
    Parker E. N., 1963, Interplanetary dynamical processes (New York: Interscience).
    Parker E. N., 1965, Space Sci. Rev., 4, 666
    Parker E. N., 1966, The Astrophysical Journal, 145, 811
    Ramzan B., Ko C. M., Chernyshov D. O., 2020, The Astrophysical Journal, 905, 117
    Recchia S., 2020, International Journal of Modern Physics D, 29, 2030006
    Recchia S., Blasi P., Morlino G., 2016, Monthly Notices of the Royal Astronomical Society,
    462, 4227
    Ruszkowski M., Yang H.-Y. K., Zweibel E., 2017, The Astrophysical Journal, 834, 208
    Ryu D., Kang H., Hallman E., Jones T. W., 2003, The Astrophysical Journal, 593, 599
    Skilling J., 1975a, MNRAS, 172, 557

    QR CODE
    :::