跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳亞陞
Ya-Sheng Chen
論文名稱: 以電漿觸媒系統去除 CF4、C4F8及N2O之可行性評估
Investigation on the Removal of CF4, C4F8 and N2O via Plasma Catalysis
指導教授: 張木彬
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程研究所
Graduate Institute of Environmental Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 104
中文關鍵詞: 非熱電漿電漿觸媒系統四氟化碳八氟環丁烷一氧化二氮氧化鋁
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • PFCs(全氟碳化物)與 N2O 在高科技產業中被大量地使用,但因其具有
    較高的全球暖化潛勢(Global warming potential)和較長的生命週期,皆被列為重要的溫室氣體。因此,針對 PFCs 與 N2O 開發有效之去除技術成為一重要議題。目前關於 PFCs 與 N2O 的排放控制方式除了利用替代化學物降低其使用量外,也有提高製程中的利用率、回收再利用和直接破壞消滅等方法,然而相較於開發替代化學物的困難、修改製程及回收再利用的高成本,處理削減目前較易著手之方向。本研究以非熱電漿結合觸媒系統針對PFCs ( CF4、C4F8)與 N2O 進行直接破壞消滅,研究 CF4、C4F8 及 N2O 在電漿中的分解效率,並透過改變不同參數,探討其中的反應機制。結果顯示當我們使用 γ-Al2O3 作為觸媒時對於 CF4、C4F8 及 N2O 的轉化都具有良好的活性,而在電漿觸媒系統當中 CF4、C4F8 及 N2O 三種汙染物皆有不錯的轉化效率,CF4 在 12 kV 下即可達 100%的轉化效率;C4F8 在 22 kV 下轉化效率也可達 100%;N2O 則是可維持在 90%的轉化效率。而產物的部分,CF4 及 C4F8 轉化之主要生成產物以 CO2、COF2 為主,在添加水氣時,亦有HF 的生成;而 N2O 轉化之主要生成產物推測為 N2、O2 及經 FT-IR 偵測到的 NO。本研究已證實非熱電漿結合觸媒系統以轉化 CF4、C4F8 及 N2O 之技術確實可行,且具有發展的潛力。


    PFCs (perfluorocarbons) and N2O are used extensively in the high-tech
    industry, however, they are listed as greenhouses gas due to their high global
    warming potentials and long lifetimes. Therefore, development of effective
    removal technologies for reducing PFCs and N2O emissions has become an
    important issue. At present, the emission control methods of PFCs and N2O
    include the use of alternative chemicals, improvement of the utilization rate,
    recycling and direct destruction. However, compared to the difficulty of
    developing alternative chemicals, modifying the process and the high cost of
    recycling, direct destruction is relatively simpler. In this study, a non-thermal
    plasma combined with the catalyst system was used to convert the PFCs (CF4,
    C4F8) and N2O. We studied the decomposition efficiencies of CF4, C4F8 and N2O
    achieved with the plasma and changed the parameters to explore the reaction
    mechanism. The results show that when γ-Al2O3 is used as a catalyst, good
    activities for conversions of CF4, C4F8 and N2O are observed. In the plasma
    catalysis system, 100% conversion efficiency of CF4 can be achieved at 12 kV;
    for C4F8, 100% conversion efficiency can also be achieved 100% at 22 kV; N2O
    can maintain conversion efficiency of 90%. The main products of the CF4 and
    C4F8 conversions are mainly CO2 and COF2 with presence of O2. When water
    vapor is added, HF is also formed. The main products of N2O conversion are
    presumed as N2, O2 and NO. This study has confirmed that the non-thermal
    plasma combined with the catalyst system to convert CF4, C4F8 and N2O is
    indeed feasible and has good potential for further development.

    摘要 I Abstract II 目錄 III 圖目錄 V 表目錄 VII 第一章 前言 1 1.1 研究緣起 1 1.2 研究目的 2 第二章 文獻回顧 3 2.1 全氟化物 ( PFCs) 3 2.2 CF4 基本物化特性 6 2.3 C4F8 基本物化特性 8 2.4 N2O 基本物化特性 10 2.5 電漿反應 12 2.6 電漿種類形式 13 2.7 全氟化物現行減量排放控制技術 18 2.8 PFCs 處理技術 20 2.9 觸媒反應機制 23 2.10 電漿結合觸媒技術 24 2.11 反應機制 25 第三章 研究方法 33 3.1 實驗規劃與系統介紹 33 3.1.1 熱催化實驗 34 3.1.2 電漿實驗與電漿結合觸媒實驗 35 3.2 研究中所使用之觸媒 37 3.3 實驗設備 39 3.4 實驗氣體 42 3.5 實驗相關結果之計算方式 43 第四章 結果與討論 44 4.1 對CF4 的觸媒熱催化分解反應 44 4.2 對CF4 的電漿分解反應 49 4.3 對C4F8 的觸媒熱催化分解反應 60 4.4 C4F8 的電漿分解反應 62 4.5 對N2O 的觸媒熱催化分解反應 71 4.6 N2O 的電漿分解反應 74 4.7 產物分析 81 第五章 結論與建議 83 5.1 結論 83 5.2 建議 84 參考文獻 85

    Abdelkader-Fernández V.K., Morales-Lara F., Melguizo M., García-Gallarín C., López-Garzón R., Godino-Salido M.L., López-Garzón F.J., Domingo-García M., Pérez-Mendoza M.J., (2015) “Degree of functionalization and stability of fluorine groups fixed to carbon nanotubes and graphite nanoplates by CF4 microwave plasma”, Applied Surface Science, 357, 1410.
    Chang C.L., Lin T.S., (2005) “Decomposition of toluene and acetone in packed dielectric barrier discharge reactors.” Plasma Chemistry and Plasma Processing 25:227-243.
    Chang M.B., Yu S.J., (2001) “An atmospheric-pressure plasma process for C2F6 removal”, Environmental Science & Technology, 35, 1587.
    Chang M.B., Lee H.M., (2004) “Abatement of perfluorocarbons with combined plasma catalysis in atmospheric-pressure environment”, Catalysis Today, 89, 109.
    Chang M.B., Chang, J.S., (2006) “Abatement of PFCs from semiconductor manufacturing processes by nonthermal plasma technologies: A critical review”, Industrial & Engineering Chemistry Research, 45,4101.
    Chang J.H., (2001) “Recent development of plasma pollution control technology: A critical review”, Science and Technology of Advanced Materials, 2, 571.
    Chang J.S., Kostov K.G., Urashima K., Yamamoto T., Okayasu Y., Kato T., Iwaizumi T., Yoshimura K., (2000) “Removal of NF3 from semiconductor-process flue gases by tandem packed-bed plasma and adsorbent hybrid systems.” IEEE Transactions on Industry Applications, 36:1251-1259.
    Chen H.L., Lee H.M., Chen S.H., Chang M.B., (2008) “Review of packed-bed plasma reactor for ozone generation and air pollution control.” Industrial & Engineering Chemistry Research, 47: 2122-2130.
    Chen H.L., Lee H.M., Chen S.H., Chang M.B., Yu S.J., Li S.N., (2009) “Removal of volatile organic compounds by single-stage and two-stage plasma catalysis systems: A review of the performance enhancement mechanisms, current status, and suitable applications” Environmental Science & Technology, 43, 2216-2277.
    Chen H.L., Lee H.M., Chen S.H., Chao Y., Chang M.B., (2009) “Review of plasma catalysis on hydrocarbon reforming for hydrogen production-interaction, integration, and prospects.” Applied Catalysis B: Environmental, 85:1-9.
    Chen J.X., Pan K.L., Yu S.J., Yan S.Y., Chang M.B., (2017) “Combined fast selective reduction using Mn-based catalysts and nonthermal plasma for NOx removal.” Environmental Science and Pollution Research, 24:21496-21508.
    Dang X., Qin C., Huang J., Teng J., Huang X., (2016) “Adsorbed benzene/toluene oxidation using plasma driven catalysis with gas circulation: Elimination of the byproducts.” Journal of Industrial and Engineering Chemistry, 37:366-371.
    Ding H.X., Zhu A.M., Yang X.F., Li C.H., Xu Y., (2005) “Removal of formaldehyde from gas streams via packed-bed dielectric barrier discharge plasmas.” Journal of Physics D: Applied Physics, 38:4160-4167.
    El-Bahy Z.M., Ohnishi R., Ichikawa M., (2003) “Hydrolysis of CF4 over alumina-based binary metal oxide catalysts”, Applied Catalysis B: Environmental, 40, 81-91.
    Fan J., Xu X., Niu X., (2008) “Decomposition of CF4 over Al2O3-based metal oxide”, Acta Physico-Chimica Sinica, 24,1271-1276.
    Futamura S., Einaga H., Zhang A., (2001) “Comparison of reactor performance in the nonthermal plasma chemical processing of hazardous air pollutants”, IEEE Transactions on Industry Applications, 37, 1105.
    Futamura S., Kabashima H., Einaga H., (2004) “Synergistic effect of silent discharge plasma and catalysts on benzene decomposition.” IEEE Transactions on Industry Applications, 40:1476-1482.
    Futamura S., Gurusamy A., (2005) “Synergy of nonthermal plasma and catalysts in the decomposition of fluorinated hydrocarbons”, Journal of Electrostatics, 63, 949.
    Gao S.H., Gao L.H., Zhou K.S., (2011) “Super-hydrophobicity and oleophobicity of silicone rubber modified by CF4 radio frequency plasma”, Applied Surface Science, 257, 4945.
    Hayashi H., Morishita S., Tatsumi T., Hikosaka Y., Noda S., Nakagawa H., Hoshino T., (1999) “Mechanism of C4F8 dissociation in parallel-plate-type plasma.” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 17(5), 2557–2571.
    Hensel K., Katsura S., Mizuno A., (2005) “DC microdischarges inside porous ceramics.” IEEE Transactions on Plasma Sciences, 33:574-575.
    Holzer F., Kopinke F.D., Roland U., (2002) “Influence of ferroelectric materials and catalysts on the performance of non-thermal plasma (NTP) for the removal of air pollutants.” Plasma Chemistry and Plasma Processing, 25:595-611.
    Hu H., Huang H., Xu J., Yang Q., Tao G.K., (2015) “N2O decomposed by discharge plasma with catalysts”, Plasma Science and Technology, 17(12), 1043.
    Jia L., Ma S., (2005) “The experimental study on high temperature air combustion and CF4 decomposition.” 2005 ASME Summer Heat Transfer Conference 705-708.
    Jiang N., Vandenbroucke Lu.N., Shang K., Li J., Wu Y., (2013) “Innovative approach for benzene degradation using hybrid surface/packed-bed discharge plasmas”, Environmental Science & Technology, 47, 9898-9903.
    Kim H.H., Ogata A., Futamura S., (2005) “Atmospheric plasma-driven catalysis for the low temperature decomposition of dilute aromatic compounds,” Journal of Physics D: Applied Physics, 38:1292-1300.
    Kim H.H., Ogata A., Futamura S., (2008) “Oxygen partial pressure-dependent behavior of various catalysts for the total oxidation of VOCs using cycled system of adsorption and oxygen plasma,” Applied Catalysis B: Environmental, 79, 356-367.
    Kogoma M., (2001) “PFC abatement system with using the atmospheric pressure glow plasma.” in Proc. Second Polish-Japanese Hakone Group Symp. Nonthermal Plasma Processing of Water and Air, 49-54.
    Kokkoris G., Goodyear A., Cooke M., & Gogolides E., (2008) “A global model for C4F8 plasmas coupling gas phase and wall surface reaction kinetics,” Journal of Physics D: Applied Physics, 41(19), 195211.
    Kraus M., Eliasson B., Kogelschatz U., Wokaum A., (2001) “CO2 reforming of methane by the combination of dielectric-barrier discharges and catalysis.” Physical Chemistry Chemical Physics, 3:294-300.
    Kumar S., Vinu A., Subrt J., Bakardjieva S., Rayalu S., Teraoka Y., Labhsetwar N., (2012) “Catalytic N2O decomposition on Pr0.8Ba0.2MnO3 type perovskite catalyst for industrial emission control.” Catalysis Today, 198(1), 125–132.
    Kuroki T., Mine J., Odahara S., Okubo M., Yamamoto T., Saeki N., (2005) “CF4 decomposition of flue gas from semiconductor process using inductively coupled plasma.” IEEE Transactions on Industry Applications, 41:221-228
    Kuroki T., Mine J., Okubo M., Yamamoto T., Saeki N., (2005) “CF4 decomposition using inductively coupled plasma: Effect of power frequency.” IEEE Transactions on Industry Applications, 41:215-220.
    Lee H.M., Chen S.H., (2017) “Thermal abatement of perfluorocompounds with plasma torches.” Energy Procedia, 142:3637-3643.
    Lin B.Y., Chang M.B., Chen H.L., Lee H.W., Yu S.J., Li S.N., (2011) “Removal of C3F8 via the combination of non-thermal plasma, adsorption and catalysis”, Plasma Chemistry and Plasma Processing, 31, 585.
    Mahammadunnisa S., Reddy P.M.K., Reddy E.L., Subrahmanyam C., (2013) “Catalytic DBD plasma reactor for CO oxidation by in situ N2O decomposition.” Catalysis Today, 211, 53.
    Mizuno A., (2007) “Industrial applications of atmospheric non-thermal plasma in environmental remediation”, Plasma Physics and Controlled Fusion, 49, 5A
    Mizuno K., Suzuki M., Kobayashi A., Imoto K., Takeuchi S., Komaki H., Ohyama C., Takaichi T., Asakura T., Prieto G., (1995) “Inductively- coupled r.f. plasma reactor for destruction of ozone depleting substances.” Thermal Science and Engineering Progress, 3:141-146.
    Mok Y.S., Koh D.J., Shin D.N., Kim K.T., (2004) “Reduction of nitrogen oxides from simulated exhaust gas by using plasma-catalytic process.” Fuel Process Technol, 86:303-317.
    Nakano T., Sugai, (1992) “Partial cross sections for electron impact dissociation of CF4 into neutral radicals”, Japanese Journal of Applied Physics, 31,2919.
    Ogata A., Einaga H., Kabashima H., Futamura S., Kushiyama S., Kim H.H., (2003) “Effective combination of nonthermal plasma and catalysts for decomposition of benzene in air.” Applied Catalysis B: Environmental, 46:87-95.
    Ogata A., Shintani N., Mizono K., Kushiyama S., Yamamoto T., (1999) “Decomposition of benzene using a nonthermal plasma reactor packed with ferroelectric pellets.” IEEE Transactions on Industry Applications, 35:753-759.
    Ou Yang C.F., Kam E.H., Liu C.H., Tzou J., Wang J.L., (2009) “Assessment of removal efficiency of perfluorocompounds (PFCs) in a semiconductor fabrication plant by gas chromatography.” Chemosphere, 76:1273-1277.
    Pan K.L., Chen D.L., Pan G.T., Chong S., Chang M.B., (2017) “Removal of phenol from gas streams via combined plasma catalysis.” Journal of Industrial and Engineering Chemistry, 52:108-120.
    Peng H.H., Pan K.L., Yu S.J., Yan S.Y., Chang M.B, (2016) “Combining nonthermal plasma with perovskite-like catalyst for NOx storage and reduction.” Environmental Science and Pollution Research, 23:19590-19601.
    Qin L., Han J., Wang G., Kim H.J., Kawaguchi I., (2010) “Highly efficient decomposition of CF4 gases by combustion.” Conference on Environmental Pollution and Public Health, 126-130.
    Song J., Chung S., Kim M., Seo M., Lee Y., Lee K., Kim J., (2013) “The catalytic decomposition of CF4 over Ce/Al2O3 modified by a cerium sulfate precursor”, Journal of Molecular Catalysis A: Chemical, 370, 50-55.
    Takaki K., Urashima K., Chang J.S., (2004) “Ferro-electric pellet shape effect on C2F6 removal by a packed-bed-type nonthermal plasma reactor”, IEEE Transactions on Plasma Science, 32, 2175.
    Takaki K., Chang J.S., Kostov K.G., (2004) “Atmospheric pressure of nitrogen plasmas in a ferro-electric packed bed barrier discharge reactor part I: Modeling.” IEEE Transactions on Dielectrics and Electrical Insulation, 11:481-490.
    Takita Y., Ninomiya M., Miyake H., Wakamatsu H., Yoshinaga Y., Ishihara T., (1999) “Catalytic decomposition of perfluorocarbons Part II. Decomposition of CF4 over AlPO4-rare earth phosphate catalysts.” Physical Chemistry Chemical Physics, 1:4501-4504.
    Takita Y., Morita C., Ninomiya M., Wakamatsu H., Nishiguchi H., Ishihara T., (1999) “Catalytic decomposition of CF4 over AIPO4-based catalysts.” Chemistry Letters, 28:417-418.
    Takita Y., Tanabe T., Ito M., Ogura M., Muraya T., Yasuda S., Nishiguchi H., Ishihara T., (2002) “Decomposition of CH2FCF3 (134a) over metal phosphate catalysts.” Industrial & Engineering Chemistry, 41:2585-2590.
    Takuma T., (1991) “Field behavior at a triple junction in composite dielectric arrangements.” IEEE Transactions on Dielectrics and Electrical Insulation, 26:500-209.
    Techaumnat B., Takuma T., (2005) “Field intensification at the contact point between a conducting plane and a spherical or an elliptic cylinder.” Proceeding of 2005 International Symposiums on Electrical Insulating Materials.
    Tonnis E.J., Vartanian V., Beu L., Lii T., Jewett R., Graves D., (1998) “Evaluation of a litmas “blue” point-of-use (POU) plasma abatement device for perfluorocompound (PFC) destruction.” International SEMATECH, Austin, TX, Technol. Transfer 98123605 A-ENG.
    Trushkin A.N., Kochetov I.V., (2012) “Simulation of toluene decomposition in a pulseperiodic discharge operating in a mixture of molecular nitrogen and oxygen”, Plasma Physics Reports, 38, 407-431.
    Tu X., Verheyde B., Corthals S., Paulussen S., Sels B.F., (2011) “Effect of packing solid material on characteristics of helium dielectric barrier discharge at atmospheric pressure.” Physics of Plasmas, 18:080702-1-080702-4.
    Van Durme J., Dewulf J., Leys C., Langenhove H., (2008) “Combining non-thermal plasma with heterogeneous catalysis in waste gas treatment: A review.” Applied Catalysis B: Environmental, 78:324-333.
    Vandenbroucke A.M., Morent R., De Geyter N., Leys C., (2011) “Non-thermal plasmas for non-catalytic and catalytic VOC abatement”, Journal of Hazardous Materials, 195, 30-54.
    Vasenkov A.V., Li X., Oehrlein G.S., Kushner M.J., (2004) “Properties of c-C4F8 inductively coupled plasmas. II. Plasma chemistry and reaction mechanism for modeling of Ar/ c-C4F8/ O2 discharges.” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 22(3), 511.
    Wofford B.A., Jackson M.W., (1999) “Surface wave plasma abatement of CHF3 and CF4 containing semiconductor process emissions”, Environmental Science & Technology, 33, 1892.
    Xie H.D., Sun B., Zhu X.M., Liu Y.J., (2009) “Influence of O2 on the CF4 decomposition by atmospheric microwave plasma.” International Journal of Environmental Science and Technology, 3:39-42.
    Yang W., Blasiak W., (2005). “Mathematical modelling of NO emissions from high-temperature air combustion with nitrous oxide mechanism.” Fuel Processing Technology, 86(9), 943–957.
    Yu S.J., Chang M.B., (2001) “Oxidative conversion of PFC via plasma processing with dielectric barrier discharges”, Plasma Chemistry Plasma Processing, 21, 311-327.
    Zhu X., Gao X., Yu X., Zheng C., Tu X., (2015) “Catalyst screening for acetone removal in a single-stage plasma-catalysis system.” Catalysis Today, 256:108-114.

    QR CODE
    :::