跳到主要內容

簡易檢索 / 詳目顯示

研究生: 曹聿男
Yu-Nan Tsao
論文名稱: 微小圓管的層流及熱傳數值模擬
Numerical laminar flow and heat transfer in microtubes
指導教授: 吳俊諆
Jun-Chi Wu
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
畢業學年度: 90
語文別: 中文
論文頁數: 72
中文關鍵詞: 層流微小管道流數值模擬熱傳特性
外文關鍵詞: heat transfer characteristics, laminar flow, Numerical simulation, microtubes flow
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文以模擬軟體FIDAP對小圓管(直徑 0.502<D<1.10 mm)及微小圓管(直徑 63.5<D<254μm),進行層流的熱流模擬。比較楊建裕等人 (2000) 的實驗結果,發現壓力梯度及摩擦因子與數值解相近,摩擦因子也與理論值接近,顯示管徑介於0.502<D<1.10 mm的範圍,小圓管流場現象與傳統理論預測相符。但比較Mala及Li (1999) 的實驗數據,發現壓力梯度及摩擦因子與數值預測有差異,表示微小圓管流場現象 (直徑63.5<D<254μm) 與傳統理論結果有出入,且實驗值的中心軸向速度較數值解大,此因微小圓管的壓降較一般管徑值大上103倍。進一步分析發現,不銹鋼材之微小管的相對粗糙度介於0.007~0.028,而傳統鍛造不銹鋼管的相對粗糙度為 ~ ,可見粗糙度對微小圓管壓降影響之巨。
    比較楊建裕等人 (2001) 的熱傳量測,發現在中低雷諾數的數值解之溫度剖面與壁溫及平均溫度分布大致遵守傳統熱傳理論的結果,但在高雷諾數 (Re=1687) 的局部及平均Nu值的實驗值皆高於數值預測值,依據楊建裕等人所定義的過渡區範圍 (Re=1,500~3,000),導致本文的模擬熱傳特性已受到紊流影響。


    This study use the FIDAP software to simulate the laminar thermal-flow characteristics of the small tubes (where the diameter range: 0.502<D<1.10 mm) and the microtubes (where the diameter range: 63.5<D<254μm). Compared with experimental results of Yang et al. (2000), numerical solutions are in good agreement with the experimental results of pressure gradient (dp/dx) and friction factors (f) In addition, the simulated f’s value agree well with the theoretical value. It shows that the numerical solution of flow phenomenon in the small tube range (0.502<D<1.10 mm) is generally obeys the theory of conventional laminar flow. However, large difference in the values of dp/dx and f are obtained when the numerical solution compared with experimental data of Mala and Li (1999), the predicting deviations of numerical results compared with pressure gradient and friction factors. This indicates the flow characteristics in the microtube range (63.5<D<254μm) are different from the classical theory of laminar flow. Besides, experimental analysis shows higher axial velocity in the tube center than that of numerical solution. Such discrepancy is believed due to the huge ratio (about 103) of pressure gradient of the microtubes to the small tube. Further analysis shows that the relative roughness ( /D) of the microtube made of stainless steel is about 0.007~0.028, where the value of /D of the conventional forged stainless steel tubes are between 0.45x10-4 ~ 0.15x10-3. Thus, the roughness effect has significant influence on the pressure gradient of the microtubes.
    Compared with heat transfer measurement of Yang et al. (2001), numerical solutions of temperature profile, wall temperature and mean temperature distribution agree well with conventional heat transfer theory in low and moderate Re flow regime. But in higher Re conditions (Re =1687), experimental results of local and mean Nu are higher than predicted results. Based on Yang’s classification, the transition range is between Re=1,500~3,000. Thus, accuracy of present numerical solutions of laminar heat transfer is affected by turbulence effect in real flow condition.

    中文摘要………………………………………………………………… i 英文摘要………………………………………………………………… ii 目錄………………………………………………………………….... iv 表目錄……………………………………………………………….... vi 圖目錄……………………………………………………………….... vii 符號說明………………………………………………………………. ix 第一章 緒論…………………………………………….………….. 1 1.1 研究動機…………………………………………………………. 1 1.2 文獻回顧…………………………………………………………. 2 1.3 造成微小通道與傳統通道偏差的可能解釋………………….… 7 1.4 研究方向…………………………………………………………. 10 第二章 數值模擬方法….………….…………………………….. 11 2.1 有限元素法簡介…...……………………………………………. 11 2.2 Fidap使用的數值演算法…...…………………………………… 11 2.2.1 完全偶合法…………………………………………………. 12 2.2.2 數值收斂解的原則………………………………………….. 14 2.2.3 分離法……...………………………………………………... 15 2.3 前處理、計算階段及後處理階段簡介…………………………. 16 2.4 解題步驟…………………………………………………………. 17 2.5 軸對稱熱流場的描述及統御方程式、邊界條件………………. 18 2.5.1 圓管流場的數值模擬過程………………………………….. 19 2.5.2 圓管熱傳的數值模擬過程………………………………….. 20 第三章 數值結果與討論…………………….…………………. 24 3.1 流場數值模擬與理論值、實驗結果比較……………………… 24 3.1.1速度比較……………………………………………………. 24 3.1.2壓降及中心軸向速度分布…………………………………. 25 3.1.3摩擦因子比較………………………………………………. 27 3.2 熱傳性能模擬與數值解、實驗結果比較……………………… 29 3.2.1 溫度分布……………………………………………………. 29 3.2.2 局部及平均Nu比較…………………………….………….. 30 第四章 結論………………………………………………………. 52 參考文獻……………………………………………..……………… 54

    Bailey, D. K., Ammel T. A., Warrington R. O., and Savoie T. I., “Single phase forced convection heat transfer in microgeometries- A review,” IECEC Conf., ES-397 Orlando, FL, ASME, 1995.
    Beskok A. and Karniadakis G. E., “Simulation of slip-flows in complex microgeometries,” ASME Proc. DSC, Vol. 40, pp. 355-370, 1992.
    Colebrook, C. F., “Turbulent Flow in Pipes with Particular Reference to the Transition Between the Smooth and Rough Pipe Laws,” J. of the Institute of Civil Engineers London, Vol. 11, 1939.
    Cuta J. M., McDonald C. E. and Shekarriz A., “Forced convection heat transfer in parallel channel array microchannel heat exchanger,” ASME PID-VOL. 2/HTD-Vol. 338, Advances in Energy Efficiency, Heat/Mass Transfer Enhancement, pp. 17-23, 1996.
    FIDAP 8 Theory Manual, Fluent Inc., 1998.
    Harley J. C., Huang Y., Bau H. H., and Zemel J. N., “Gas flow in micro-channels,” J. Fluid Mech., Vol. 284, pp. 257-274, 1995.
    Incropera F. P. and DeWitt D. P., Fundamentals of Heat Mass Transfer 4th ed., 420-444, John Wiley & Sons, New York, 1996.
    Li J. M., Wang B. X. and Peng X. F., “Wall-adjacent layer analysis for developed-flow laminar heat transfer of gases in microchannels,” Inter. J. Heat Mass Transfer, Vol. 43, pp. 839-847, 2000.
    Lin S., Kwok C. K., Li R. Y., Chen Z. H., and Chan Z. Y., “Local frictional pressure during vaporization of R-12 through capillary tubes,” Inter. J. Multiphase Flow, Vol. 17, No. 1, pp. 95-102, 1991.
    Mala G. M. and Li D., “Flow characteristics of water in microtubes,” Inter. J. Heat and Fluid Flow Vol. 20 pp. 142-148, 1999.
    Moody, L. F., “Friction Factors for Pipe Flow,” Transactions of the ASME, Vol. 66, 1944.
    Munson B. R., Young D. F. and Okiishi T. H., Fundamentals of Fluid Mechanics 2nd ed., pp. 439-440, pp. 469-470, John Wiley & Sons, New York, 1994.
    Obot N. T., “Toward a better understanding of friction and heat/mass transfer in microchannels-A Literature Review,” Proc. of Inter. Conf. on Heat Transfer & Transport Phenomena in Microscale. Oct. 2000.
    Palm B., “Heat transfer in microchannels,” Proc. of Inter. Conf. on Heat Transfer & Transport Phenomena in Microscale. Oct. 2000.
    Papautsky I., Brazzle J., Ammel T. and Frazier A. B., “Laminar fluid behavior in microchannels using micropolar fluid theory,” Sensors and Actuators, Vol. 73, pp. 101-108, 1999.
    Peng X. F, and Peterson G. P., “Forced convection heat transfer of single-phase binary mixtures through microchannels,” Exp. Thermal and Fluid Science, Vol. 12, pp. 98-104, 1996.
    Peng X. F., Peterson, G. P. and Wang, B. X., “Flow boiling of binary mixtures in microchannel plates,” Inter. J. Heat Mass Transfer, Vol. 39, No. 6, pp. 1257-1264, 1996.
    Peng X. F., Peterson G. P., and Wang B. X., “Frictional flow characteristics of water flowing through microchannels,” Exp. Heat Transfer, Vol. 7, pp. 249-264, 1994.
    Peng X. F., Peterson G. P., and Wang B. X., “Heat transfer characteristics of water flowing through microchannels,” Exp. Heat Transfer, Vol. 7, pp. 265-283, 1994.
    Pfahler J., Harley J., Bau H., and Zemel J., “Liquid transport in micron and submicron channels,” Sensors and Actuators, Vol. A21-A23, pp. 431-434, 1990.
    Qu W., Mala G. M. and Li D., “Pressure-driven water flows in trapezoidal silicon microchannels,” Inter. J. Heat Mass Transfer, Vol. 43, pp. 353-364, 2000.
    Rohsenow W. M., Hartnett J. P., Cho Y. I., Handbook of heat transfer 3rd ed., pp. 5.25, McGraw-Hill, 1998.
    Tso C.P. and Mahulikar S. P., “The use of the Brinkman number for single phase forced convective heat transfer in microchannels,” Inter. J. Heat Mass Transfer, Vol. 41, No. 12, pp. 1759-1769, 1998a.
    Tso C. P. and Mahulikar S. P., proc. 2nd IEEE Electronics Packaging Technology Conf., Singapore, Dec., pp. 126-132, 1998b.
    Tso C. P. and Mahulikar S. P., “The role of the Brinkman number in analyzing flow transitions in microchannels,” Inter. J. Heat Mass Transfer, Vol. 42, pp. 1813-1833, 1999.
    Tso C. P. and Mahulikar S. P., “Experimental verification of the role of Brinkman number in microchannels using local parameters,” Inter. J. Heat Mass Transfer, Vol. 43, pp. 1837-1849, 2000.
    Wu P. and Little W. A., “Measurement of friction factors for the flow of gases in very fine channels used for microminiature Joule-Thompson refrigerators,” Cryogenics, Vol. 23, No. 5, pp. 273-277, 1983.
    Xu B., Ooi K. T., Wong N. T., and Liu C. Y., “Liquid flow in microchannels,” Proc. of the 5th ASME/JSME Thermal Engineering Conf., pp. 6214-6220, 1999.
    Yang C., Li D., Hasliyah J. H., “Modeling forced liquid convection in rectangular microchannels with electrokinetic effects,” Inter. J. Heat Mass Transfer, Vol. 41, pp. 4229-4249, 1998.
    Yang C. Y., Chien H. T., Lu S. R. and Shyu R. J., “Friction characteristics of water, R-134a and air in small tubes,” Proc. of Inter. Conf. on Heat Transfer and Transport Phenomena in Microscale, pp. 168-174, 2000.
    Yang C. Y., Hsu S. M., Chien H. T. and Chen C. S., “Experimental investigation of liquid R-134a and water forced convection heat transfer in small circular tubes,” Trans. of the Aeronautical and Astronautical Society of R.O.C., Vol. 33, No. 4, pp. 179-184, 2001.
    Yang C. Y., and Webb R. L., “Friction pressure drop of R-12 in small hydraulic diameter extruded aluminum tubes with and without micro-fins,” Inter. J. Heat and Mass Transfer, Vol. 39, No. 4, pp. 801-809, 1996.
    Yu D., Warrington R., Baron R., and Ameel T., “An experimental investigation of fluid flow and heat transfer in microtubes,” Proc. ASME/JSME Thermal Engineering Conf., Vol. 1, ASME, pp. 523-530, 1995

    QR CODE
    :::