| 研究生: |
黃子益 TZU-I Huang |
|---|---|
| 論文名稱: |
滲流引致渠床顆粒堆積之潰散過程分析 |
| 指導教授: |
周憲德
Hsien-Ter Chou |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 84 |
| 中文關鍵詞: | 土石流 、顆粒流 、堆積體 、速度剖面 、衝擊力 |
| 外文關鍵詞: | Bagnold |
| 相關次數: | 點閱:8 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究進行堆積體受滲流作用進而發展成顆粒流之渠槽實驗,利用高速攝影機所拍攝之影像進行影像分析,並給定堆積體上游有固定供水量情況下,堆積體內部因滲流作用產生的破壞行為及後續潰散為顆粒流的運動特性。在速度分析是利用PIV技術中Voronoï Patterns方法來分析顆粒流速度剖面,比較在不同的上游供水量及底床坡度的速度分布,並和Bagnold速度理論進行比較。本研究並以水壓計量測衝擊顆粒流撞擊垂直平板的壓力,並與前人經驗公式比對,討論實驗中可能導致壓力峰值誤差及不準確性。
顆粒流之波峰高度會隨著供水量及坡度不同而有所改變,顆粒流內部的含水程度亦會影響其速度。顆粒流運動速度在坡度15度較符合Bagnold Profile之條件,且底部有滑脫速度產生。實驗中利用水壓力計進行量測,無法準確地反應出其衝擊力大小,與於理論值相比,有低估情形,其原因可能為顆粒流的前鋒並非飽和狀態,且顆粒的撞擊力無法完全轉換為擋板上之水壓力。
The mobilization process of a granular pile and the associated debris flow by the action of upstream runoff and seepage was experimentally investigated in an inclined flume. The critical condition and the failure process of the granular pile were analyzed by employing the PIV approach. The effect of runoff discharge, flume slope and permeability are explored. During the mobilization process, a partially unsaturated granular snout was formed, then became a bulge at the surge front just as stony debris flows in the field. The velocity profile in the unsaturated snout depicts a Bagnold’s rheology, but it deviates slightly from Bagnold’s profile due to presence of bottom slipping in the intermediate saturated zone. In addition, the evolution of solid fraction indicates that the critical failure condition is controlled by the seepage flow. The pore pressure sensors couldn’t accurately reflect the magnitude of impact force upon the vertical wall since the approaching granular flow is unsaturated and the particle impact can not be fully transformed into the dynamic pore pressure.
1. 高橋保、匡尚富 (1988),「天然ダムの決壊による土石流の規模に関する研究」,京都大學防災研究所年報,第31 號,B-2,1988。
2. 詹錢登教授(2004),「土石流概論」, 科技圖書股份有限公司,台北。
3. 涂毅宏.(2011). 堆積顆粒受水流作用下形成土石流之渠槽實驗. 中央大學土木工程學系學位論文, 1-67,中壢.
4. Bagnold, R. A. (1954, August). “Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear”. In Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences (Vol. 225, No. 1160, pp. 49-63). The Royal Society.
5. Berzi, D., & Jenkins, J. T. (2009). “Steady inclined flows of granular-fluid mixtures. Journal of Fluid Mechanics”, 641, 359-387.
6. Cui, P., Zeng, C., & Lei, Y. (2015). “Experimental analysis on the impact force of viscous debris flow”. Earth Surface Processes and Landforms, 40(12), 1644-1655
7. Davies T.R.H. (1990)” Debris-flow Suges-Expermental Simulation” Jouranal of Hydrology(N.Z.),Vol.29,NO.1,1990.
8. Du Pont, S. C., Fischer, R., Gondret, P., Perrin, B., & Rabaud, M. (2005). “Instantaneous velocity profiles during granular avalanches”. Physical review letters, 94(4), 048003.
9. Egashira, S., Honda, N., & Itoh, T. (2001). “Experimental study on the entrainment of bed material into debris flow”. Physics and Chemistry of the Earth, Part C: Solar, Terrestrial & Planetary Science, 26(9), 645-650.
10. He, S., Liu, W., & Li, X. (2016). “Prediction of impact force of debris flows based on distribution and size of particles”. Environmental Earth Sciences, 75(4), 1-8.
11. Hübl, J., Suda, J., Proske, D., Kaitna, R., & Scheidl, C. (2009, September). “Debris flow impact estimation”.In Eleventh international symposium on water management and hydraulic Engineering (Vol. 1, pp. 137-148).
12. Ilstad, T., Elverhøi, A., Issler, D., & Marr, J. G. (2004). “Subaqueous debris flow behaviour and its dependence on the sand/clay ratio: a laboratory study using particle tracking”. Marine Geology, 213(1), 415-438.
13. Jiang, Y. J., & Towhata, I. (2013). Experimental study of dry granular flow and impact behavior against a rigid retaining wall. Rock mechanics and rock engineering, 46(4), 713-729.
14. Kim, Y., Nakagawa, H., Kawaike, K., & Zhang, H. (2013). “Study on Characteristic Analysis of Closed-type Sabo Dam with a Flap due to Dynamic Force of Debris Flow”. Annuals of the Disaster Prevention Research Institute, Kyoto University, (56).
15. Kwan, J. S. H. (2012). Supplementary technical guidance on design of rigid debris-resisting barriers (No. 270). GEO Report.
16. Sarno, L., Carravetta, A., Martino, R., & Tai, Y. C. (2013). “Pressure coefficient in dam-break flows of dry granular matter”. Journal of Hydraulic Engineering,139(11), 1126-1133.
17. Scheidl, C., Chiari, M., Kaitna, R., Müllegger, M., Krawtschuk, A., Zimmermann, T., & Proske, D. (2013).” Analysing debris-flow impact models, based on a small scale modelling approach”. Surveys in Geophysics, 34(1), 121-140.