| 研究生: |
陳冠宇 Kuan-Yu Chen |
|---|---|
| 論文名稱: |
具雜訊混沌系統之控制 Controlling Chaos in a Noisy Chaotic System |
| 指導教授: |
董必正
Pi-Cheng Tung |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 139 |
| 中文關鍵詞: | 狀態回授 、Rössler方程式 、混沌同步 、混沌控制 、獨立成份分析 、Duffing方程式 |
| 外文關鍵詞: | chaos synchronization, controlling chaos, independent component analysis, state feedback, Duffing equation, Rössler equation |
| 相關次數: | 點閱:5 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
獨立成份分析是一種訊號處理和統計的方法,在僅有未知訊號源的觀察
或量測之混合資料時,假設未知訊號源均為非高斯分佈且彼此互相獨立,
則獨立成份分析可以自混合資料中分離出獨立訊號;混沌非線性系統的控
制在許多工業應用上顯得越來越重要,加上主從式混沌系統間的混沌同步
在秘密通訊應用上的重要性,使得混沌控制成為相當受到矚目的領域;狀
態回授控制對於消除控制系統的干擾和非線性已具備系統化且發展完善;
基於上述的技術,本文提出一個新的控制方案結合獨立成份分析自量測白
雜訊中分離出混沌訊號,以及運用狀態回授控制消除混沌系統的非線性。
首先在Lur’e 系統的基礎上發展狀態回授控制的系統化程序,用以分析
二個具隨機白雜訊混沌系統的同步現象,藉由提出的改良式獨立成份分析
法的幫助,當混沌訊號遭受隨機白雜訊的汙染時,仍能自雜訊源中取出真
實的混沌訊號,並可以任意設計同步時間且保證穩定,即使系統的輸出具
有量測雜訊。其次,發展結合改良式獨立成份分析過濾雜訊和狀態回授消
除系統非線性的混沌控制方案,統御具雜訊之混沌系統,在系統動態已知
的情況下,此混沌控制方案易於理解並實現,本文提出二個範例展示此方
案的效能。最後,本文的模擬結果顯示狀態回授和獨立成份分析的技術應
用於具雜訊混沌系統的同步和控制問題具有相當的成效。此新方案是第一
次用於具量測雜訊之控制系統上可以取代傳統的Kalman 濾波器。
Independent component analysis (ICA) is a signal processing and statistical
method designed to separate independent sources given only observed or
measured data that are mixtures of some unknown sources. These unknown
sources are assumed to be non-Gaussian and mutually independent. In addition,
controlling chaos of chaotic nonlinear systems has been received much attention
and becomes more important for many industrial applications. Furthermore,
chaos synchronization between master and slave chaotic systems has been
attractive topic for its potential applications for secure communications. State
feedback control for canceling disturbance and nonlinearity of control systems
has been systematic and well developed. In this dissertation, based upon these
techniques as mention above, a new scheme has been proposed to combine the
ICA method for separating chaotic signals from measured white noise with a
state feedback control for cancelling nonlinearity of chaotic system.
In this study, we first develop a systematic procedure of state feedback
control, based on a Lur’e-type system, to analyze the synchronization of two
chaotic systems in the presence of random white noise. With the aid of the
proposed modified independent component analysis, the real chaotic signal can
be extracted from a noisy source where the chaotic signal has been contaminated
by random white noise. The synchronization time can be arbitrarily designed
to guarantee stability, even if the system’s output is corrupted by measurement
noise. Secondly, we combine a modified independent component analysis
approach with an approach for feedback cancellation of nonlinear terms. This
approach to engineering control can be utilized to efficiently govern a noisy
chaotic system. The methodology is easy to comprehend and to implement,
but previous knowledge of the system dynamics is needed. Two examples are
provided to show the effectiveness of the proposed scheme. Finally, the results
of the thesis demonstrate the fruitfulness of the state feedback and the ICA
theory application to the synchronization and control problems for noisy chaotic
systems. The new scheme is first used for control systems with measurement
noise which can replace the conventional Kalman filter.
[1] R. C. Hilborn, Chaos and Nonlinear Dynamics, Oxford University Press Inc., New York, 2000.
[2] B. Hasselblatt and A. Katok, A First Course in Dynamics: with a Panorama of Recent Developments, Cambridge University Press, 2003.
[3] K. T. Alligood, T. D. Sauer, and J. A. Yorke, Chaos – An Introduction to Dynamical Systems, Springer-Verlag New York, Inc., 1996.
[4] L. M. Pecora and T. L. Carroll, “Driving systems with chaotic signals,” Physical Review A, Vol. 44, No. 4, pp. 2374-2383, 1991.
[5] E. M. Shahverdiev and K. A. Shore, “Chaos synchronization in multiple time delay electrooptical semiconductor lasers,” Int. J. Modern Physics B, Vol. 21, No. 31, pp. 5207-5219, 2007.
[6] C. P. Li and W. H. Deng, “Chaos synchronization of fractional-order differential systems,” Int. J. Modern Physics B, Vol. 20, No. 7, pp. 791-803, 2006.
[7] J. Lu, J. Cao, and D. W. C. Ho, “Adaptive stabilization and synchronization for chaotic Lur’e systems with time-varying delay,” IEEE Trans. on Circuits and Systems I: Fundamental Theory and Applications, Vol. 55, No. 5, pp. 1347-1356, 2008.
[8] S. H. Wang, W. R. Liu, H. P. Lu, J. Y. Kuang, and G. Hu, “Periodicity of chaotic trajectories in realizations of finite computer precisions and its implication in chaos communications,” Int. J. Modern Physics B, Vol. 18, Nos. 17-19, pp. 2617-2622, 2006.
[9] M. Chen and W. Min, “Unknown input observer based chaotic secure communication,” Physics Letters A, Vol. 372, No. 10, pp. 1595-1600, 2008.
[10] U. Parlitz, L. Kocarev, T. Stojanovski, and H. Preckel, “Encoding messages using chaotic synchronization,” Physical Review E, Vol. 53, No. 5, pp. 4351-4361, 1996.
[11] C. K. Chen, J. J. Yan, and T. L. Liao, “Sliding mode control for synchronization of Rössler systems with time delays and its application to secure communication,” Physica Scripta, Vol. 76, No. 5, pp. 436-441, 2007.
[12] N. Gershenfeld and G. Grinstein, “Entrainment and communication with dissipative pseudorandom dynamics,” Physics Review Letters, Vol. 74, No. 25, pp. 5024-5027, 1995.
[13] E. Ott, C. Grebogi, and J. A. Yorke, “Controlling chaos,” Physics Review Letters, Vol. 64, No. 11, pp. 1196-1199, 1990.
[14] X. Wu, J. Cai, and M. Wang, “Global chaos synchronization of the parametrically excited Duffing oscillators by linear state error feedback control,” Chaos, Solutions and Fractals, Vol. 36, No. 1, pp.121-128, 2008.
[15] Y. C. Lai and C. Gerbogi, “Synchronization of chaotic trajectories using control,” Physical Review E, Vol. 47, No. 4, pp. 2357-2360, 1993.
[16] T. Kapitaniak, “Synchronization of chaos using continuous control,” Physical Review E, Vol. 50, No. 2, pp. 1642-1644, 1994.
[17] G. Malescio, “Synchronization of chaotic systems by continuous control,” Physical Review E, Vol. 53, No. 3, pp. 2949-2952, 1996.
[18] Y. M. Liaw and P. C. Tung, “Analysis and observer design in synchronization via a state feedback control method,” Physical Review E, Vol. 56, No. 5, pp. 5265-5271, 1997.
[19] R. He and P. G. Vaidya, “Analysis and synthesis of synchronous periodic and chaotic systems,” Physical Review A, Vol. 46, No. 12, pp. 7387-7392, 1992.
[20] X. W. Liu and X. Gao, “Delayed fuzzy controller design for hyperchaos with application to hyperchaotic Chen’s system,” Int. J. Modern Physics C, Vol. 18, No. 7, pp. 1095-1105, 2007.
[21] T. Shinbrot and C. Grebogi, “Using small perturbations to control chaos,” Nature, Vol. 363, No. 6428, pp. 411-417, 1993.
[22] Q. He, Y. Xu, G. M. Mahmoud, and W. Xu, “The control of stochastic complex damped nonlinear systems,” Int. J. Modern Physics C, Vol. 18, No. 8, pp. 1263-1275, 2007.
[23] M. P. Joy, D. E. Ingber, and S. Huang, ”Chaotic mean field dynamics of a boolean network with random connectivity,” Int. J. Modern Physics C, Vol. 18, No. 9, pp. 1459-1473, 2007.
[24] H. N. Agiza, ”Chaos synchronization of two coupled dynamos systems with unknown system parameters,” Int. J. Modern Physics C, Vol. 15, No. 6, pp. 873-883, 2004.
[25] R. Mettin, W. Lauterborn, A. Hübler, A. Scheeline, and W. Lauterborn, “Parametric entrainment control of chaotic systems,” Physical Review E, Vol. 51, No. 5, pp. 4065-4075, 1995.
[26] E. A. Jackson, “Controls of dynamic flows with attractors,” Physical Review A, Vol. 44, No. 8 pp. 4839-4853, 1990.
[27] Y. Xu, W. Xu, and G. M. Mahmoud, “Generating chaotic limit cycles for a complex Deffing – Van der Pol system using a random phase,” Int. J. Modern Physics C, Vol. 16, No. 9, pp. 1437-1447, 2005.
[28] G. Chen and X. Dong, “On feedback control of chaotic nonlinear dynamic systems,” Int. J. Bifurcation and Chaos, Vol. 2, No. 2, pp. 407-411, 1992.
[29] A. A. M. Farghaly, “An active control for chaos synchronization of real and complex Van der Pol oscillators,” Int. J. Modern Physics C, Vol. 18, No. 5, pp. 795-804, 2007.
[30] G. M. Mahmoud, H. A. Abdusalam, and A. A. M. Farghaly, “Chaotic behavior and chaos control for a class of complex partial differential equations,” Int. J. Modern Physics C, Vol. 12, No. 6, pp. 889-899, 2001.
[31] A. Gelb (Ed.), Applied Optimal Estimator, The Analytic Science Co., Massachusetts, 1974.
[32] P. So, E. Ott, and W. P. Dayawansa, “Observing chaos: Deducing and tracking the state of a chaotic system from limited observation,” Physical Review E, Vol. 49, No. 4, pp. 2650-2660, 1994.
[33] S. I. Amari, A. Hyvärinen, S. Y. Lee, T. W. lee, and V. D. Sánchez A., “Blind signal separation and independent component analysis,” Neurocomputing, Vol. 49, pp. 1-5, 2002.
[34] A. Hyvärinen, J. Karhunen, and E. Oja, Independent Component Analysis, John Wiley & Sons, Inc., New York, 2001.
[35] J. Hérault and C. Jutten, “Space or time adaptive signal processing by neural network models,” AIP Conference Proceedings 151 on Neural Networks for Computing, Utah, U.S.A., pp. 206-211, 1987.
[36] C. Jutten and J. Hérault, “Blind separation of sources, part I: an adaptive algorithm based on neuromimetic architecture,” Signal Processing, Vol. 24, No. 1, pp. 1-10, 1991.
[37] P. Comon, C. Jutten, and J. Hérault, “Blind separation of sources, part II: problems statement,” Signal Processing, Vol. 24, No. 1, pp. 11-20, 1991.
[38] E. C. Cherry, “Some experiments on the recognition of speech, with one and two ears,” J. of the Acoustical Society of America, Vol. 25, pp. 975–979, 1953.
[39] J. Maddox, “Cocktail party effect made tolerable,” Nature, Vol. 369, No. 6481, pp. 517, 1994.
[40] X. R. Cao and R.W. Liu, “General approach to blind source separation,” IEEE Trans. on Signal Processing, Vol. 44, No. 3, pp. 562-571, 1996.
[41] A. Cichocki and S. Amari, Adaptive Blind Signal and Image Processing: Learning Algorithms and Applications, John Wiley & Sons, Inc., New York, 2002.
[42] P. Comon, “Independent component analysis, a new concept?” Signal Processing, Vol. 36, No. 3, pp. 287-314, 1994.
[43] A. J. Bell and T. J. Sejnowski, “An information-maximization approach to blind separation and blind deconvolution,” Neural Computation, Vol. 7, pp. 1129-1159, 1995.
[44] A. Cichocki, S. C. Douglas, and S. Amari, “Robust techniques for independent component analysis (ICA) with noisy data,” Neurocomputing, Vol. 22, pp. 113-129, 1998.
[45] J. Karthunen, E. Oja, L. Wang, R. Vigário, and J. Joutsensalo, “A class of neural networks for independent component analysis,” IEEE Trans. on Neural Networks, Vol. 8, No. 3, pp. 486-504, 1997.
[46] E. Oja, “From neural learning to independent components,” Neurocomputing, Vol. 22, pp. 187-199, 1998.
[47] A. Hyvärinen and E. Oja, “A fast fixed-point algorithm for independent component analysis,” Neural Computation, Vol. 9, No. 7, pp. 1483-1492, 1997.
[48] A. Hyvärinen, “Fast and robust fixed-point algorithms for independent component analysis,” IEEE Trans. on Neural Networks, Vol. 10, No. 3, pp. 626-634, 1999.
[49] A. Hyvärinen and E. Oja, “Independent component analysis: algorithms and applications,” Neural Networks, Vol. 13, No. 4-5, pp. 411-430, 2000.
[50] A. Hyvärinen, “An alternative approach to infomax and independent component analysis,” Neurocomputing, Vol. 44-46, pp. 1089-1097, 2002.
[51] Z. Shi, H. Tang, and Y. Tang, “A new fixed-point algorithm for independent component analysis,” Neurocomputing, Vol. 56, pp. 467-473, 2004.
[52] M. D. Plumbley, “Algorithms for nonnegative independent component analysis,” IEEE Trans. on Neural Networks, Vol. 14, No. 3, pp. 534-543, 2003.
[53] S. Makeig, M. Westerfield, T. P. Jung, S. Enghoff, J. Townsend, E. Courchesne, and T. J. Sejnowski, “Dynamic brain sources of visual evoked response,” Science, Vol. 25, No. 5555, pp. 690-694, 2002.
[54] S. Waldert, M. Bensch, M. Bogdan, W. Rosenstiel, B. Schölkopf, C. L. Lowery, H. Eswaran, and H. Preissl, “Real-time fetal heart monitoring in biomagnetic measurements using adaptive real-time ICA,” IEEE Trans. on Biomedical Engineering, Vol. 54, No. 10, pp. 1867-1874, 2007.
[55] J. Basak, A. Sudarshan, D. Trivedi, and M. S. Santhanam, “Weather data mining using independent component analysis,” J. of Machine Learning Research, Vol. 5, pp. 239-253, 2004.
[56] K. Kobayashi and Y. Uchikawa, “The rejection of magnetic noise from the wire using independent component analysis for magnetocardiogram,” IEEE Trans. on Magnetics, Vol. 41, No. 10, pp. 4152-4154, 2005.
[57] X. P. Zhang and Z. Chen, “An automated video object extraction system based on spatiotemporal independent component analysis and multiscale segmentation,” EURASIP J. on Applied Signal Processing, Vol. 2006, No. 1, pp. 1-17, 2006.
[58] M. S. Bartlett, J. R. Movellan, and T. J. Sejnowski, “Face recognition by independent component analysis,” IEEE Trans. on Neural Networks, Vol. 13, No. 6, pp. 1450-1464, 2002.
[59] K. C. Kwak and W. Pedrycz, “Face recognition using an enhanced independent component analysis approach,” IEEE Trans. on Neural Networks, Vol. 18, No. 2, pp. 530-541, 2007.
[60] M. Kuraya, A. Uchida, S. Sano, S. Yoshimori, and K. Umeno, “Independent component analysis of mixed chaos in electronic circuits,” Electronics Letters, Vol. 44, No. 3, pp. 248-250, 2008.
[61] H. Saruwatari, S. Kurita, K. Takeda, F. Itakura, T. Nishikawa, and K. Shikano, “Blind source separation combining independent component analysis and beamforming,” EURASIP J. on Applied Signal Processing, Vol. 11, No. 1, pp. 1135-1146, 2003.
[62] J. M. Górriz, C. G. Puntonet, F. Rojas, R. Martin, S. Hornillo, and E. W. Lang, “Optimizing blind source separation with guided genetic algorithms,” Neurocomputing, Vol. 69, pp. 1442-1457, 2006.
[63] X. Dong and G. Chen, “On feedback control of chaotic continuous-time systems,” IEEE Trans. on Circuits and Systems I: Fundamental Theory and Applications, Vol. 40, No. 9, pp. 591-601, 1993.
[64] X. Dong and G. Chen, “Controlling chaotic continuous-time systems via feedback,” IEEE Proc. of Decision and Control Conf., Tucson, Vol. 3, pp. 2502-2503, 1992.
[65] G. Chen (Ed.), Controlling Chaos and Bifurcations in Engineering Systems, CRC Press LLC, Florida, 1999.
[66] E. N. Lorenz, “Deterministic nonperiodic flow,” J. of Atmospheric Science, Vol. 20, pp. 130-141, 1963.
[67] O. Rössler, “An equation for continuous chaos,” Physics Letters A, Vol. 57, No. 5, pp. 397-398, 1976.
[68] G. Duffing, Erzwungene Schwingungen bei Veränderlicher Eigenfrequenz and Ihre Technische Bedeutung, F. Vieweg & Sohn, Braunschweig, 1918.
[69] T. Matsumoto, “A chaotic attractor from Chua’s circuit,” IEEE Trans. on Circuits and Systems, Vol. CAS-31, No. 12, pp. 1055-1058, 1984.
[70] T. Matsumoto, L. O. Chua, and M. Komuro, “The double scroll,” IEEE Trans. on Circuits and Systems, Vol. CAS-32, No. 8, pp. 798-818, 1985.
[71] E. R. Hunt, “Stabilizing high-period orbits in a chaotic system: The diode resonator,” Physics Review Letters, Vol. 67, No. 15, pp. 1953-1955, 1991.
[72] X. Yu, G. Chen, Y. Song, Z. Cao, and Y. Xia, “A generalized OGY method for controlling higher order chaotic systems,” Proceedings of the 39th IEEE Conf. on Decision and Control, Sydney, Australia, pp. 2054-2059, 2000.
[73] T. Saito, S. Itoh, and M. Yagi, “Control of chaos by linear and nonlinear feedback methods,” J. Plasma Fusion Research Series, Vol. 6, pp. 263-266, 2004.
[74] T. L. Vincent, “Control using chaos,” IEEE Control Systems, Vol. 17, pp. 65-76, 1997.
[75] T. L. Vincent and W. J. Grantham, Nonlinear and Optimal Control Systems, John Wiley & Sons, Inc., New York, 1997.
[76] K. Ogata, Modern Control Engineering, Prentice-Hall, Inc., New Jersey, 1997.
[77] B. D. O. Anderson and J. B. Moore, Optimal Control-Linear Quadratic Method, Prentice-Hall, Inc., New Jersey, 1990.
[78] A. L. Fradkov and A. Y. Pogromsky, Introduction to Control of Oscillations and Chaos, World Scientific Publishing Co., London, UK, 1998.
[79] J. J. E. Slotine and W. Li, Applied Nonlinear Control, Prentice-Hall, Inc., New Jersey, 1991.
[80] H. K. Khalil, Nonlinear Systems, Prentice-Hall, Inc., New Jersey, 1996.
[81] M. Girolami (Ed.), Advances in Independent Component Analysis, Springer-Verlag London Limited, UK, 2000.
[82] T. W. Lee, Independent Component Analysis: Theory and Applications, Kluwer Academic Publishers, Boston, 1998.