跳到主要內容

簡易檢索 / 詳目顯示

研究生: 王鵬榮
PENG-RONG WANG
論文名稱: 探討固態發酵自行生產纖維水解酵素用於分解稻稈及生產生質酒精之研究
指導教授: 徐敬衡
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程與材料工程學系
Department of Chemical & Materials Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 74
中文關鍵詞: 生質酒精發酵稻稈
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來由於能源危機與石油價格波動,以農業廢棄物作為基質的生質酒精為研究議題漸受重視,也有需多文獻及研究成果,足以說明生質能源目前佔有重要的地位。
    本研究透過固態發酵培養Aspergillus niger與Trichiderma reesei,大量生產纖維水解酵素,並於糖化步驟中提出有別於傳統的糖化方法。傳統的方法均為添加純化的纖維水解酵素,近年來亦有自行生產酵素的操作,且需經過粗製的純化與分離菌體的步驟。在本研究中提出藉由控制環境參數以省略分離純化的步驟,抑制菌體生長以及測試還原糖累積,達到減少成本的效果。在糖化的步驟發現纖維水解酵素活性為糖化步驟的主因,進而提出延長酵素活性的方法,使累積還原糖達到更好的效果。最後利用糖化後的發酵液讓Saccharomyces cerevisiae 進行酒精發酵。
    由實驗結果顯示,本研究第一階段的Aspergillius niger與Trichoderma reesei共培養酵素液最大活性為0.54FPU/g sub,而在第二階段可以從2g稻稈糖化出的還原糖累積量為14.25g/L,水解效率達到64%,而在第三階段酒精發酵的酒精生產量為3.99g/L,轉化率為55%。


    In this study, agricultural waste—straws were hydrolyzed and used to replace the relatively expensive glucose or molasses in ethanol production ,and to reduce the cost of the fermentation process.
    Solid-state fermentation was carried out with Trichoderma reesei RUT C-30 and Aspergillus niger BCRC 31130 co-cultured at 28°C. 7.5ml/g sub of 50mM citric acid buffer solution were used to extract enzyme from SSF residual. The crude enzyme without any purification and concentration with the highest enzyme activity of exoglucanase, endoglucanase and β-glucosidase was 0.62, 0.79 and 7.5 U/ml, respectively.
    Hydrolysis process was carried out at 50°C for 48h ,with add to soymilk to reduce the cellulase inactivation ,and to get the highest cumulative sugar concentration of 14.25 g/L and the decomposition ratio of 64%.
    Ethanol fermentation was carried out in a serum bottle with the sugar gain from hydrolysis and obtained the highest ethanol concentration of 3.99g/L.

    摘要 II 目錄 IV 表目錄 VI 圖目錄 VII 第一章 緒論 1 1.1. 研究動機 1 1.2. 研究目的 2 第二章 文獻回顧 3 2.1. 木質纖維素 3 2.1.1. 木質纖維素簡介 3 2.1.2. 木質纖維素前處理 5 2.2. 纖維水解酵素 8 2.2.1. 纖維水解酵素簡介 8 2.2.2. 纖維水解酵素來源 9 2.2.3. 纖維水解酵素適合之環境參數 11 2.3. 裡氏木黴菌(Trichoderma reesei) 11 2.4. 黑曲黴(Aspergillus niger) 12 2.5. 蛋白酶抑制劑 13 2.6. 豆漿 14 2.7. 生質酒精 15 2.8. 生質酒精現有技術 16 2.8.1. 分開糖化水解和發酵程序 16 2.8.2. 同步糖化與發酵程序 16 2.9. 釀酒酵母菌(Saccharomyces cerevisiae) 17 第三章 實驗規劃、材料與方法 18 3.1. 實驗材料 18 3.1.1. 實驗菌株 18 3.1.2. 實驗藥品 19 3.1.3. 實驗設備 21 3.2. 實驗流程設計 22 3.2.1. 生產纖維水解酵素 23 3.2.2. 糖化生產還原糖 23 3.2.3. 酒精發酵 24 3.3. 實驗方法 24 3.3.1. 菌種保存 24 3.3.2. 培養基組成 25 3.3.3. 稻稈之前處理 29 3.3.4. 纖維水解酵素生產 30 3.3.5. 糖化生產還原糖 31 3.3.6. 酒精發酵 33 3.4. 分析方法 33 3.4.1. 還原糖定量 33 3.4.2. 酵素活性分析 35 3.4.3. 乙醇濃度分析 37 第四章 實驗結果與討論 39 4.1. 纖維水解酵素生產 39 4.1.1. 固態發酵生產纖維水解酵素 39 4.2. 糖化生產還原糖 43 4.2.1. 酵素萃取比例與還原糖無法持續上升之情形 43 4.2.2. 在高濃度之稻稈糖化結果 45 4.2.3. 探討延長酵素活性之方法 46 4.3. Saccharomyces cerevisiae發酵生產酒精 50 4.3.1. 以不同基質糖化應用於酒精生產 50 第五章 結論與建議 53 5.1. 結論 53 5.2. 建議 54 第六章 參考文獻 55

    1. Mosier, N., et al., Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource technology, 2005. 96(6): p. 673-686.
    2. Gaykawad, S.S., et al., Pervaporation of ethanol from lignocellulosic fermentation broth. Bioresource technology, 2013. 129: p. 469-476.
    3. Balat, M., Production of bioethanol from lignocellulosic materials via the biochemical pathway: a review. Energy conversion and management, 2011. 52(2): p. 858-875.
    4. Wang, X. and S. Uchiyama, Polymers for Biosensors Construction. State of the Art in Biosensors - General Aspects. 2013.
    5. Sánchez, C., Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnology advances, 2009. 27(2): p. 185-194.
    6. Himmel, M.E., J.O. Baker, and R.P. Overend, Enzymatic conversion of biomass for fuels production. 1994: American Chemical Society Washington, DC.
    7. Binod, P., et al., Bioethanol production from rice straw: an overview. Bioresource technology, 2010. 101(13): p. 4767-4774.
    8. Tanaka, M., R. Matsuno, and A.O. Converse, N-butylamine and acid-steam explosion pretreatments of rice straw and hardwood: effects on substrate structure and enzymatic hydrolysis. Enzyme and microbial technology, 1990. 12(3): p. 190-195.
    9. Zhang, Q. and W. Cai, Enzymatic hydrolysis of alkali-pretreated rice straw by Trichoderma reesei ZM4-F3. Biomass and Bioenergy, 2008. 32(12): p. 1130-1135.
    10. Sun, Y. and J. Cheng, Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresource technology, 2002. 83(1): p. 1-11.
    11. Teeri, T.T., Crystalline cellulose degradation: new insight into the function of cellobiohydrolases. Trends in Biotechnology, 1997. 15(5): p. 160-167.
    12. Walker, L. and D. Wilson, Enzymatic hydrolysis of cellulose: an overview. Bioresource Technology, 1991. 36(1): p. 3-14.
    13. Béguin, P. and J.P. Aubert, The biological degradation of cellulose. FEMS microbiology reviews, 1994. 13(1): p. 25-58.
    14. Bhat, M. and S. Bhat, Cellulose degrading enzymes and their potential industrial applications. Biotechnology advances, 1997. 15(3): p. 583-620.
    15. Bansal, N., et al., Production of cellulases from Aspergillus niger NS-2 in solid state fermentation on agricultural and kitchen waste residues. Waste management, 2012. 32(7): p. 1341-1346.
    16. Duff, S.J. and W.D. Murray, Bioconversion of forest products industry waste cellulosics to fuel ethanol: a review. Bioresource Technology, 1996. 55(1): p. 1-33.
    17. Li, C., et al., Effect of pH on cellulase production and morphology of Trichoderma reesei and the application in cellulosic material hydrolysis. Journal of biotechnology, 2013. 168(4): p. 470-477.
    18. Eastburn, D. and E. Butler, Effects of soil moisture and temperature on the saprophytic ability of Trichoderma harzianum. Mycologia, 1991: p. 257-263.
    19. Chaverri, P., R.O. Gazis, and G.J. Samuels, Trichoderma amazonicum, a new endophytic species on Hevea brasiliensis and H. guianensis from the Amazon basin. Mycologia, 2011. 103(1): p. 139-151.
    20. Kredics, L., et al., In vitro water activity and pH dependence of mycelial growth and extracellular enzyme activities of Trichoderma strains with biocontrol potential*. Journal of Applied Microbiology, 2004. 96(3): p. 491-498.
    21. Chaverri, P., et al., Hypocrea/Trichoderma (ascomycota, hypocreales, hypocreaceae): species with green ascospores. 2003: Centraalbureau voor Schimmelcultures Utrecht.
    22. Hanif, A., A. Yasmeen, and M. Rajoka, Induction, production, repression, and de-repression of exoglucanase synthesis in Aspergillus niger. Bioresource Technology, 2004. 94(3): p. 311-319.
    23. Sohail, M., et al., Cellulase production from Aspergillus niger MS82: effect of temperature and pH. New Biotechnology, 2009. 25(6): p. 437-441.
    24. Schuster, E., et al., On the safety of Aspergillus niger–a review. Applied microbiology and biotechnology, 2002. 59(4-5): p. 426-435.

    25. James, G.T., Inactivation of the protease inhibitor phenylmethylsulfonyl fluoride in buffers. Analytical biochemistry, 1978. 86(2): p. 574-579.
    26. Romero, M., et al., Cellulase production by Neurospora crassa on wheat straw. Enzyme and Microbial Technology, 1999. 25(3): p. 244-250.
    27. Miyagi, Y., K. Miwa, and H. Inoue, Inhibition of human low-density lipoprotein oxidation by flavonoids in red wine and grape juice. The American journal of cardiology, 1997. 80(12): p. 1627-1631.
    28. Kunitz, M., Crystalline soybean trypsin inhibitor II. General properties. The Journal of general physiology, 1947. 30(4): p. 291-310.
    29. WOLF, R.L.A.A.W.J., Compositional Changes in Trypsin Inhibitors, Phytic Acid,Saponins and Isoflavones Related to Soybean Processing. 1995.
    30. Kim, S. and M.T. Holtzapple, Lime pretreatment and enzymatic hydrolysis of corn stover. Bioresource Technology, 2005. 96(18): p. 1994-2006.
    31. Karimi, K., G. Emtiazi, and M.J. Taherzadeh, Ethanol production from dilute-acid pretreated rice straw by simultaneous saccharification and fermentation with Mucor indicus, Rhizopus oryzae, and Saccharomyces cerevisiae. Enzyme and Microbial Technology, 2006. 40(1): p. 138-144.

    32. 黃俊凱, 探討光照對Saccharomyces cerevisiae生產乙醇之影響. 2008.
    33. 黃浩宸, 探討可控式包埋Saccharomyces cerevisiae對於乙醇醱酵之影響. 2011.
    34. Ingledew, W., Alcohol production by Saccharomyces cerevisiae: A yeast primer. Chapter 5 In: The alcohol textbook. KA Jacques, TP Lyons and DR Kelsall Ed. 1998, Nottingham University Press. Nottingham, UK.
    35. Sun, R., Cereal straw as a resource for sustainable biomaterials and biofuels: chemistry, extractives, lignins, hemicelluloses and cellulose. 2010: Elsevier.
    36. Hung, C.-H., Purification and Characterization of a Trypsin Inhibitor from Brassica campestris Seeds. 2003.

    QR CODE
    :::