| 研究生: |
許智堯 Chih-Yao Hsu |
|---|---|
| 論文名稱: |
美國半導體相關製造業化學廢棄物管理方法之分析 |
| 指導教授: | 沈建文 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 企業管理學系 Department of Business Administration |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 73 |
| 中文關鍵詞: | 半導體產業 、廢棄物管理 、群集分析 、有毒物質排放 |
| 相關次數: | 點閱:17 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
半導體產業是世界上最大的產業之一,由於目前半導體製造涉及許多複雜、精細的製程,且許多製程必須多次重複處理,於製造過程中,使用數百種有機化合物與無機化合物,且半導體產業使用大量溶劑並不以最經濟的方式進行處理,其廢溶劑在高溫下焚燒,昂貴的能源成本及焚燒的二次汙染物為一大問題且危害人類及環境生態。然而,隨著環境保護及永續發展的問題日趨重要,永續性逐漸成為半導體產業最關心的議題之一,但有關半導體產業於廢棄物管理方法之研究並不多見。因此本研究根據美國國家環境保護局的有毒物質排放清單資料,找出產業中較常出現之化學物質如氫氟酸、硝酸、硝酸鹽、阿摩尼亞、N-甲基吡咯酮、鹽酸、硫酸共七種化學物質,分析產生此類化學廢棄物的公司之廢棄物管理方法於2004年至2013年的變化趨勢,且將廢棄物管理方法資料運用群集分析加以收斂、分類,依美國國家環境保護局之準則,區分各半導體公司於此七種化學物質處理的年度表現。本研究結果將有助於了解半導體產業化學物質排放處理的趨勢,並找出相關的標竿公司,提供產業改進的參考。
Hundreds of high purity organic and inorganic compounds are involved in the complicated and delicate manufacturing of semiconductor. Because these waste solvents are incinerated at very high temperature, secondary pollutants from incineration are harmful to human life and environment. With the growing concerns on environmental protection and sustainable development, the issue of sustainability has become an important issue of the semiconductor industry. However, there are not many researches addressing how wastes in the semiconductor manufacturing are managed. Hence, this study aims to investigate how the semiconductor companies in the United States handle their waste management in their manufacturing processes. According to the EPA Toxics Release Inventory data, the frequently-used chemicals during the semiconductor production include Hydrogen Fluoride, Nitric Acid, Nitrate Compounds, Ammonia, N-Methyl-2-Pyrrolidone, Hydrochloric Acid and Sulfuric Acid. Cluster analysis was applied on the data of these chemicals to classify the approaches of waste management among the U.S. semiconductor companies. This study also ranked the waste management of the semiconductor companies based on the findings of the cluster analysis. The result of this study can assist us to understand the trends of chemical waste management in the semiconductor industry and identify the best-performing companies for the related companies to benchmark.
Ahola, J., Ahlqvist, T., Ermes, M., Myllyoja, J., & Savola, J. (2010). ICT for environmental sustainability. Green ICT Roadmap. VTT Tiedotteita—Res Notes, 2532, 51.
Binions, R., & Naik, A. J. T. (2013). 13 - Metal oxide semiconductor gas sensors in environmental monitoring. In R. J. K. Tan (Ed.), Semiconductor Gas Sensors (pp. 433-466): Woodhead Publishing.
Chaniago, Y. D., Khan, M. S., Choi, B., & Lee, M. (2014). Energy Efficient Optimal Design of Waste Solvent Recovery Process in Semiconductor Industry Using Enhanced Vacuum Distillation. Energy Procedia, 61(0), 1451-1454.
Chaniago, Y. D., Minh, L. Q., Khan, M. S., Koo, K.-K., Bahadori, A., & Lee, M. Optimal design of advanced distillation configuration for enhanced energy efficiency of waste solvent recovery process in semiconductor industry. Energy Conversion and Management(0).
Chen, D., Heyer, S., Seliger, G., & Kjellberg, T. (2012). Integrating sustainability within the factory planning process. CIRP Annals - Manufacturing Technology, 61(1), 463-466.
Chen, D., Schudeleit, T., Posselt, G., & Thiede, S. (2013). A State-of-the-art Review and Evaluation of Tools for Factory Sustainability Assessment. Procedia CIRP, 9(0), 85-90.
de Luna, M. D. G., Warmadewanthi, & Liu, J. C. (2009). Combined treatment of polishing wastewater and fluoride-containing wastewater from a semiconductor manufacturer. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 347(1–3), 64-68.
Den, W., Fu-Hsiang, K., & Tiao-Yuan, H. (2002). Treatment of organic wastewater discharged from semiconductor manufacturing process by ultraviolet/hydrogen peroxide and biodegradation. Semiconductor Manufacturing, IEEE Transactions on, 15(4), 540-551. doi: 10.1109/TSM.2002.804903
Forsberg, M. (2004). Chemical Mechanical Polishing of Silicon and Silicon Dioxide in Front End Processing. Acta Universitatis Upsaliensis Uppsala.
Garbie, I. H. (2014). An analytical technique to model and assess sustainable development index in manufacturing enterprises. International Journal of Production Research, 52(16), 4876-4915. doi: 10.1080/00207543.2014.893066
Hsu, C.-W., Hu, A. H., Chiou, C.-Y., & Chen, T.-C. (2011). Using the FDM and ANP to construct a sustainability balanced scorecard for the semiconductor industry. Expert Systems with Applications, 38(10), 12891-12899.
Hu, C. Y., Lo, S. L., Kuan, W. H., & Lee, Y. D. (2005). Removal of fluoride from semiconductor wastewater by electrocoagulation–flotation. Water Research, 39(5), 895-901.
Huang, S.-H., & Pan, Y.-C. (2015). Automated visual inspection in the semiconductor industry: A survey. Computers in Industry, 66, 1-10. doi: 10.1016/j.compind.2014.10.006
Kim, J.-Y., Shin, C.-H., Choi, H., & Bae, W. (2012). Recovery of phosphoric acid from mixed waste acids of semiconductor industry by diffusion dialysis and vacuum distillation. Separation and Purification Technology, 90(0), 64-68.
Lee, H., Wang, H., Park, J., & Jeong, H. (2014). Experimental investigation of process parameters for roll-type linear chemical mechanical polishing (Roll-CMP) system. Precision Engineering, 38(4), 928-934. doi: 10.1016/j.precisioneng.2014.06.003
Lee, T.-C., & Liu, F.-J. (2009). Recovery of hazardous semiconductor-industry sludge as a useful resource. J Hazard Mater, 165(1–3), 359-365.
Li, L., He, Q., Zheng, M., & Liu, Z. (2015). Contribution of ultrasonic traveling wave to chemical–mechanical polishing. Ultrasonics, 56(0), 530-538.
Lin, S. H., & Yang, C. R. (2004). Chemical and physical treatments of chemical mechanical polishing wastewater from semiconductor fabrication. J Hazard Mater, 108(1-2), 103-109. doi: 10.1016/j.jhazmat.2004.01.014
Mönch, L., Fowler, J. W., Dauzère-Pérès, S., Mason, S. J., & Rose, O. (2011). A survey of problems, solution techniques, and future challenges in scheduling semiconductor manufacturing operations. Journal of Scheduling, 14(6), 583-599. doi: 10.1007/s10951-010-0222-9
Mohd Anuar, N. I., Yusof, U. K., & Nor Akmal Khalid, M. (2013, 8-10 Dec. 2013). An artificial immune system algorithm for optimizing the distributed production scheduling in the semiconductor assembly industry. Paper presented at the Intelligent Systems Design and Applications (ISDA), 2013 13th International Conference on.
Mollick, E. (2006). Establishing Moore's Law. Annals of the History of Computing, IEEE, 28(3), 62-75. doi: 10.1109/MAHC.2006.45
Shi, S., Cao, Y., Huang, Z., & Li, Y. (2013). Measurement technique of telecentricity for the illumination system in the 193nm photolithography. Optik - International Journal for Light and Electron Optics, 124(17), 3079-3084.
Shin, C.-H., Kim, J.-Y., Kim, J.-Y., Kim, H.-S., Lee, H.-S., Mohapatra, D., . . . Bae, W. (2009). A solvent extraction approach to recover acetic acid from mixed waste acids produced during semiconductor wafer process. J Hazard Mater, 162(2–3), 1278-1284.
Tsai, W.-T. (2011). Environmental and health risks of chlorine trifluoride (ClF3), an alternative to potent greenhouse gases in the semiconductor industry. J Hazard Mater, 190(1–3), 1-7.
Villard, A., Lelah, A., & Brissaud, D. (2015). Drawing a chip environmental profile: environmental indicators for the semiconductor industry. Journal of Cleaner Production, 86(0), 98-109.
Wang, C.-T., & Chiu, C.-S. (2014). Competitive strategies for Taiwan's semiconductor industry in a new world economy. Technology in Society, 36(0), 60-73.
Wang, D., Li, S., & Sueyoshi, T. (2014). DEA environmental assessment on U.S. Industrial sectors: Investment for improvement in operational and environmental performance to attain corporate sustainability. Energy Economics, 45(0), 254-267.
Warmadewanthi, & Liu, J. C. (2009). Recovery of phosphate and ammonium as struvite from semiconductor wastewater. Separation and Purification Technology, 64(3), 368-373.
Won, C.-H., Choi, J., & Chung, J. (2012). Evaluation of optimal reuse system for hydrofluoric acid wastewater. J Hazard Mater, 239–240(0), 110-117.
Xiong, W., Du, J., Fang, L., Luo, X., Deng, Q., & Du, C. (2008). 193nm interference nanolithography based on SPP. Microelectronic Engineering, 85(5-6), 754-757. doi: 10.1016/j.mee.2008.01.057