跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林楷文
Kevin Lin
論文名稱: Mitigating Ionospheric Effects in DInSAR Using TRIM TEC Map: A Case Study of the September 17, 2022 Earthquake
指導教授: 張中白
Chung-Pai Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 地球科學學院 - 地球科學學系
Department of Earth Sciences
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 78
中文關鍵詞: 差分干涉合成孔徑雷達2022 關山池上地震ALOS2台灣區域性電離層模型電離層修正
外文關鍵詞: DInSAR, 2022 Guanshan and Chihshang Seismic Events, ALOS2, Taiwan Regional Ionospheric Map, Ionospheric Correction
相關次數: 點閱:21下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 2022 年 9 月17日與18日,臺東關山及池上地區先後發生淺層地震,
    造成顯著的地表破裂與明顯地表形變。本研究運用差分干涉合成孔徑雷達
    (Differential Interferometric Synthetic Aperture Radar, DInSAR)技術,分析地震引致之形變分布。資料來源為ALOS-2衛星於震前(2022年4月3日)及震後(2022年9月18日)之下降軌道影像,涵蓋9月17日規模Mw 6.6、震源深度約7.8公里之主震事件。
    DInSAR 透過對兩期雷達影像進行干涉處理,可有效解析地表位移。然
    而,除了真實形變訊號外,干涉相位亦會受到如電離層效應與地形影響等誤
    差項干擾。電離層效應係由於衛星訊號於通過電離層時產生相位延遲,尤其
    在總電子含量(Total Electron Content, TEC)梯度明顯時,易於干涉圖中形成非形變造成之相位條紋。臺灣位處於赤道電離層異常(Equatorial Ionization Anomaly, EIA)北緣,TEC 變異性較高,使得電離層修正在本區域尤為重要。
    為有效修正電離層誤差,本研究採用中央氣象局(Central Weather Administration (CWA))所提供之臺灣區域電離層地圖(Taiwan Regional Ionospheric Map, TRIM)之 TEC 資料。考量信號穿越電離層之高度變化,本研究以最大電子濃度高度(hmF2)分布作為電離層穿透視窗,並於修正過程中引入權重矩陣以因應信號路徑可能為斜向或曲折。經修正後,可有效去除電離層對相位訊號之干擾,進一步取得較為精確之同震地表形變資訊。


    On September 17 and 18, 2022, shallow earthquakes struck Guanshan and Chihshang, respectively, causing significant surface ruptures and noticeable ground deformation. We used Differential Interferometric Synthetic Aperture Radar (DInSAR) technology to analyze the deformation pattern. This study employed ALOS-2 satellite images captured in the descending track before (April 3, 2022) and after (September 18, 2022) the earthquake, covering the September 17 event, which had a magnitude of M6.6 and a focal depth of 7.8 km.
    Ground displacements can be detected by performing differential interferometry on two radar satellite images. However, besides surface deformation, the measurements also contain errors caused by ionospheric effects, topographic variations, and other factors. The ionospheric errors result from delays as the satellite signal traverses the ionosphere. Taiwan is situated in the Equatorial Ionization Anomaly (EIA) region, where the Total Electron Content (TEC) fluctuates over time due to variations in the EIA. If there is a difference in TEC between the two images, additional phase fringes appear in the interferograms.
    To mitigate the ionospheric effects in DInSAR results, this study utilizes the Taiwan Regional Ionospheric Map (TRIM) TEC data provided by the Central Weather Administration (CWA). Given that Taiwan is near the northern boundary of the EIA, ionospheric correction is typically performed using the peak electron density altitude (HmF2) distribution as a penetration window. A weighting matrix is applied during correction since the signal path may be oblique and curved. After ionospheric correction, the accurate coseismic surface deformation can be accurately obtained.

    Abstract i 摘要 ii 致謝 iv Table of Contents v List of Figures vii List of Tables ix Chapter 1 Introduction 1 Chapter 2 Background 4 2.1 Guanshan and Chihshang Seismic Events 4 2.2 Interferometry Synthetic Aperture Radar, InSAR 8 2.3 Differential Interferometry Synthetic Aperture Radar (DInSAR) 10 2.4 Ionosphere 14 2.4.1 Layers of the ionosphere 14 2.4.2 Total electron content 15 2.4.3 Equatorial Ionization Anomaly 15 2.5 International Reference Ionosphere simulation 18 2.6 The Geometry of TEC Projection – The Penetration Window 20 Chapter 3 Data and Methodology 23 3.1 SAR images 23 3.1.1 ALOS-2 23 3.1.2 PALSAR-2 23 3.2 TEC maps: TRIM 27 3.3 Interpolation Between Different TEC Maps 29 3.4 Workflow 30 3.4.1 Interferometric Processing 30 3.4.2 Ionospheric correction 30 3.4.3 Final Processing and Quality Assessment 31 3.4.4 Software 31 Chapter 4 Results 34 4.1 Original DInSAR result 34 4.2 Flat horizontal HmF2 36 4.3 Flat horizontal HmF2 with spatial weighting 39 4.4 Inclined HmF2 Model 41 4.5 HmF2 with multiple inclinations and spatial weightings 43 Chapter 5 Discussions 45 5.1 Comparing results by different models 45 5.2 The circle pattern in the DInSAR result 48 5.3 Impact of TEC Map and SAR Acquisition Time Discrepancy 50 5.4 Validation of Ionosphere-Corrected DInSAR Results Using GNSS Coseismic Observations 52 Chapter 6 Conclusions 57 References 58

    Adekoya, B. J., & Chukwuma, V. U. (2016). Ionospheric F2 layer responses to total solar eclipses at low and mid-latitude. Journal of Atmospheric and Solar-Terrestrial Physics, 138–139, 136–160. https://doi.org/10.1016/j.jastp.2016.01.006
    Appleton, E. V. (1946). Two anomalies in the ionosphere. Nature, 157(3995), 691. https://doi.org/10.1038/157691a0
    Balan N., & Bailey G. j. (1995). Equatorial Plasma Fountain and Its Effects: Possibility of an Additional Layer. JOURNAL OF GEOPHYSICAL RESEARCH, 100(A11), 21421–21432. https://agupubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1029/95JA01555
    Baumjohann, W., & Treumann, R. A. (2012). Basic Space Plasma Physics. World Scientific Publishing Co. Pte, Ltd.
    Bazilevskaya, G. A., Krainev, M. B., & Makhmutov, V. S. (2000). Effects of cosmic rays on the Earth's environment. Journal of Atmospheric and Solar-Terrestrial Physics, 62(17–18), 1577–1586. https://doi.org/10.1016/S1364-6826(00)00113-9
    Berardino, P., Fornaro, G., Lanari, R., & Sansosti, E. (2002). A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Transactions on Geoscience and Remote Sensing, 40(11), 2375–2383. https://doi.org/10.1109/TGRS.2002.803792
    Bilitza, D., McKinnell, L.-A., Reinisch, B., & Fuller-Rowell, T. (2011). The International Reference Ionosphere today and in the future. Journal of Geodesy, 85(12), 909–920. https://doi.org/10.1007/s00190-010-0427-x
    Bilitza, D., Pezzopane, M., Truhlik, V., Altadill, D., Reinisch, B. W., & Pignalberi, A. (2022). The International Reference Ionosphere model: A review and description of an ionospheric benchmark. Reviews of Geophysics, 60, e2022RG000792. https://doi.org/10.1029/2022RG000792
    Central Weather Administration Earthquake Report. (2022, September). 086 9/17 21:41 ML 6.6 23.08N 121.16E, i.e. 36.4 km N of Taitung County https://scweb.cwa.gov.tw/zh-tw/earthquake/details/2022091721411966086
    Central Weather Administration Earthquake Report. (2022, September). 111 9/18 14:44 ML 6.8 23.14N 121.20E, i.e. 42.6 km N of Taitung County https://scweb.cwa.gov.tw/zh-tw/earthquake/details/2022091814441568111
    Chen, C. W., & Zebker, H. A. (2000). Two-dimensional phase unwrapping with use of statistical models for cost functions in nonlinear optimization. Journal of the Optical Society of America A, 17(4), 401–414. https://doi.org/10.1364/JOSAA.17.000401
    Community Coordinated Modeling Center. (2025, March 31). International Reference Ionosphere. https://irimodel.org/
    Community Coordinated Modeling Center. (n.d.). IRI | Instant Run | CCMC. https://kauai.ccmc.gsfc.nasa.gov/instantrun/iri/
    Ferretti, A., Fumagalli, A., Novali, F., Prati, C., Rocca, F., & Rucci, A. (2011). A new algorithm for processing interferometric data stacks: SqueeSAR. IEEE Transactions on Geoscience and Remote Sensing, 49(9), 3460–3470. https://doi.org/10.1109/TGRS.2011.2124465
    Ferretti, A., Monti Guarnieri, A., Prati, C., Rocca, F., & Massonnet, D. (2007). INSAR Principles A. ESA publications.
    https://earth.esa.int/eogateway/documents/20142/37627/InSAR-Principles-Guidelines-for-SAR-Interferometry-Processing-and-Interpretation.pdf
    Gomba, G., Parizzi, A., De Zan, F., Eineder, M., & Bamler, R. (2016). Toward operational compensation of ionospheric effects in SAR interferograms: The split-spectrum method. IEEE Transactions on Geoscience and Remote Sensing, 54(3), 1446-1461.
    Geospatial Information Authority of Japan. (n.d.). SAR interferometry Q&A. Geospatial Information Authority of Japan. https://vldb.gsi.go.jp/sokuchi/sar/qanda/qanda-e.html
    Geospatial Information Authority of Japan. (n.d.). SAR画像の見方. SAR干渉画像の作成手順と見方. https://www.gsi.go.jp/uchusokuchi/sar_procedure.html
    GMTSAR Documentation. (2023). https://gmtsar.github.io/documentation/index.html#
    Hanssen, R. F. (2001). Radar interferometry: Data interpretation and error analysis. Kluwer Academic Publishers. https://doi.org/10.1007/0-306-47633-9
    Hofmann-Wellenhof, B., Lichtenegger, H., & Collins, J. (2001). Global Positioning System: Theory and practice (5th ed.). Springer Vienna. https://doi.org/10.1007/978-3-7091-6199-9
    Tung, H., Chen, H.-Y., Hsu, Y.-J., Tang, C.-H., Lee, J.-C., Wang, Y., & Lee, H. K. (2025). Geodetic constraints on the September 2022 Guanshan and Chihshang earthquakes, eastern Taiwan. Tectonophysics, 895, 230600. https://doi.org/10.1016/j.tecto.2024.230600
    Hsu Y. C., Lu C. H., Chang C. P., Huang S. Y., Yen I. C., Yen J. Y. (2023). Primary Exploration of the Surface Rupture and Co-seismic Deformation of the 2022 Guanshan- Chihshang Earthquake. SINO-GEOTECHNICS, 176, 43–52.
    Hooper, A., Zebker, H., Segall, P., & Kampes, B. (2004). A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophysical research letters, 31(23).
    Japan Aerospace Exploration Agency. (2015, March 31). AUIG2 User’s Manual (ALOS/ALOS-2 Consolidated Edition). https://www.eorc.jaxa.jp/faq_html/ALOS-2_Manual_en.pdf
    Japan Aerospace Exploration Agency Earth Observation Research Center. (n.d.). ALOS-2 Overview. https://www.eorc.jaxa.jp/ALOS/en/alos-2/a2_about_e.htm
    Japan Aerospace Exploration Agency Earth Observation Research Center. (n.d.). ALOS-2 Project / PALSAR-2. https://www.eorc.jaxa.jp/ALOS-2/en/about/palsar2.htm
    Karimzadeh, S., et al. (2024). Time-series analysis of L-band PALSAR 2 images in forested areas: implications for vegetation penetration and ground monitoring. Journal of Forest Remote Sensing. Advance online publication. https://doi.org/10.1080/20964471.2024.2320466
    Kelly, M. C. (1989). The Earth’s ionosphere. Int. Geophys. Ser, 43, 71.
    Kivelson, M. G. (Margaret G., & Russell, C. T. (Christopher T. ). (1995). Introduction to space physics
    Klobuchar, J. A. (1987). Ionospheric Time-Delay Algorithm for Single-Frequency GPS Users. IEEE Transactions on Aerospace and Electronic Systems, AES-23(3), 325–331. https://doi.org/10.1109/TAES.1987.310829
    Kotova, D., Jin, Y., & Miloch, W. (2022). Interhemispheric variability of the electron density and derived parameters by the Swarm satellites during different solar activity. Journal of Space Weather and Space Climate, 12, 12. https://doi.org/10.1051/swsc/2022007
    Liang, C., Agram, P., Simons, M., & Fielding, E. J. (2019). Ionospheric correction of InSAR time series analysis of C-band Sentinel-1 TOPS data. IEEE Transactions on Geoscience and Remote Sensing, 57(9), 6755–6773. https://doi.org/10.1109/TGRS.2019.2908494
    Liao, W.-T. (2018). Using Sentinel-1 interferometry with regional ionosphere correction for land displacement detection in Taiwan (Master’s thesis). National Central University, Taiwan. https://etd.lib.nycu.edu.tw/cgi-bin/gs32/ncugsweb.cgi?o=dncucdr&s=id=%22GC105022006%22.&searchmode=basic
    Liao, W.-T., Tseng, K.-H., Lee, I.-T., Liibusk, A., Lee, J.-C., Liu, J.-Y., Chang, C.-P., & Lin, Y.-C. (2020). Sentinel-1 interferometry with ionospheric correction from global and local TEC maps for land displacement detection in Taiwan. Advances in Space Research, 65(5), 1447–1465. https://doi.org/10.1016/j.asr.2019.11.041
    Lindsey, E. O., Natsuaki, R., Xu, X., Shimada, M., Hashimoto, M., Melgar, D., & Sandwell, D. T. (2015). Line-of-sight displacement from ALOS-2 interferometry: Mw 7.8 Gorkha Earthquake and Mw 7.3 aftershock. Geophysical Research Letters, 42(16), 6655–6661. https://doi.org/10.1002/2015GL065385
    Muja, R., Vasile, G., Boudon, R., D'Urso, G., & Boldo, D. (2012). Multidimensional Very High-Resolution SAR Signal Processing for Monitoring Energetic Structures
    NASA Scientific Visualization Studio. (2018, November 8). The equatorial electrojet (EEJ) [Video]. NASA. https://svs.gsfc.nasa.gov/4617/
    Pätsi, S., & Mishev, A. (2022). Ionization effect in the Earth’s atmosphere due to cosmic rays during the GLE #71 on 17 May 2012. Advances in Space Research, 69(7), 2893–2901. https://doi.org/10.1016/j.asr.2022.02.008
    Sandwell, D. T., Mellors, R., Tong, X., Xu, X., Wei, M., & Wessel, P. (2016). GMTSAR: An InSAR processing system based on Generic Mapping Tools (2nd ed.). Scripps Institution of Oceanography. Retrieved from http://topex.ucsd.edu/gmtsar/tar/GMTSAR_2ND_TEX.pdf
    Sandwell, D., Mellors, R., Tong, X., Wei, M., & Wessel, P. (2011). Open radar interferometry software for mapping surface deformation. Eos Transactions American Geophysical Union, 92(28). https://doi.org/10.1029/2011EO280002
    Seismic Activity - Central Weather Administration Seismological Center (n.d.) https://scweb.cwa.gov.tw/en-us/earthquake/data
    Simonetto, E., & Follin, J.-M. (2012). An overview on interferometric SAR software and a comparison between DORIS and SARScape packages. In E. Bocher & M. Neteler (Eds.), Geospatial free and open source software in the 21st century (pp. 107–122). Springer. https://doi.org/10.1007/978-3-642-10595-1_7
    Susi, M. (2017). Improved receiver tracking models for scintillation monitoring (Doctoral dissertation, University of Nottingham)
    The PyGMT Developers. (2025, March 31). PyGMT A Python Interface for the Generic Mapping Tools. https://www.pygmt.org/latest/index.html
    Uieda, L., Tian, D., Leong, W. J., Jones, M., Schlitzer, W., Grund, M., … Wessel, P. (2022). PyGMT: A Python interface for the Generic Mapping Tools (version 0.6.0) [Software]. Zenodo. https://doi.org/10.5281/zenodo.6349217
    Velinov, P. I. Y., Asenovski, S., Kudela, K., Lastovicka, J., Mateev, L., Mishev, A., & Tonev, P. (2013). Impact of cosmic rays and solar energetic particles on the Earth’s ionosphere and atmosphere. Journal of Space Weather and Space Climate, 3, A14. https://doi.org/10.1051/swsc/2013036
    Zheng, W. J. (2022, August 6). GMT 教學手冊 [GMT tutorial manual]. https://gmt-tutorials.org/index.html
    Wessel, P., Luis, J. F., Uieda, L., Scharroo, R., Wobbe, F., Smith, W. H. F., & Tian, D. (2019). The Generic Mapping Tools version 6. Geochemistry, Geophysics, Geosystems, 20(11), 5556–5564. https://doi.org/10.1029/2019GC008515
    World Meteorological Organization. (n.d.). Satellite: ALOS-2. Observing Systems Capability Analysis and Review Tool. https://space.oscar.wmo.int/satellites/view/alos_2
    Zebker, H., Werner, C., Rosen, P., & Hensley, S. (1993). Accuracy of topographic maps derived from ERS-1 interferometric radar. https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=298010

    QR CODE
    :::