| 研究生: |
賴庚辛 Geng-Xin Lai |
|---|---|
| 論文名稱: |
延散效應對水岩交互作用反應波前的影響 Effect of Dispersion on Reactive Fronts of Water-Rock Interaction |
| 指導教授: |
陳瑞昇
Jui-sheng Chen 倪春發 Chuen-fa Ni |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 應用地質研究所 Graduate Institute of Applied Geology |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 97 |
| 中文關鍵詞: | 延散效應 、反應波前 、傳輸 、波鋒行為圖 |
| 外文關鍵詞: | dispersion, reactive front, front behavior diagr |
| 相關次數: | 點閱:16 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
當地下流體因水頭差而流動,其流動過程常會帶動化學物種之遷移,使得地下流動流體、多孔隙介質與化學物種之間產生溶解反應,使得多孔隙介質之孔隙率改變,進而改變多孔隙介質之水力傳導係數等水文地質物理特性參數。當反應流體優先進入孔隙率較高地區,將會造成反應波前的不穩定現象,反應波前的型態將會受到地下水上游壓力梯度及孔隙率較高地區分佈影響,其中擴散/延散效應可壓制反應波前的不穩定現象。
過去的研究多為探討地下流體流動緩慢下之現象,只考慮化學物種之擴散傳輸,在模式上多忽略了延散傳輸之影響,然而在許多情況下地下水流速不見得會緩慢,此條件下化學物種延散傳輸顯得比擴散傳輸更為重要,因此本研究在數值模式中加入延散傳輸,並比較擴散傳輸及延散傳輸對反應波前的影響。本研究之數值方法耦合地下流體流動、化學物種傳輸、地球化學反應之非線性偏微分方程組,利用逐步迭代法結合隱式有限差分法求解。
經數值模式分析結果發現,延散度將影響反應波前形態的發展,延散度增加將造成單波鋒反應波前縮短、雙波鋒反應波前合併。當上游地下水壓力梯度在2到5之間、初始雙擾動之間距在1.25至2.25之間,雙波鋒反應波前之型態將會發展為單波鋒。
While flowing through a porous medium, migration of solute causes mineral dissolution thereby increasing its porosity and ultimately permeability. The reactive fluid flows preferentially into highly permeable zones, which are therefore dissolved most rapidly, producing a further preferential permeability enhancement. Thus, the reactive front may be unstable. A reactive front will be affected by upstream pressure gradient and initial local non-uniformities. Previous studies neglected dispersion process and considered that solute is only transported by diffusion. This study takes dispersion into consideration and investigates the effect of dispersion process on evolution of reactive front. An implicit sequential iteration approach method is used to solve a set of nonlinear equations coupled with fluid flow, species transport, and fluid-rock reaction. Results show that the dispersion have significant effects on shape of reactive front. Increasing dispersion will cause that double fingers develop into single finger in cases that upstream pressure gradient is between 2 and 5, initial local non-uniformities spacing is between 1.25 and 2.25.
[1] Chadam, J., Ortoleva, P., Sen, A., “ Reactive-infiltration instabilities” , IMA Journal of Applied Mathematics, 36,207–220, 1986.
[2] Sherwood, “ Stability of a plane reaction front in a porous medium” , Chemical Engineering Science 42(7), 1823–1829, 1987.
[3] Hinch, E.J., Bhatt, B.S., “ Stability of an acid front moving through rock” , Journal of Fluid Mechanics 212, 279–288, 1990.
[4] Ortoleva, P., Merino, E., Moor, C., Chadam, J., “ Geochemical self-organization I: feedback mechanisms andmod elling approach” , American Journal of Science 287, 979–1007, 1987a.
[5] Ortoleva, P., Chadam, J., Merino, E., Sen, A.,. “ Self-organization in water–rock interaction systems II: the reactive-infiltration instability” , American Journal of Science 287, 1008–1040, 1987b.
[6] Chadam, J., Peirce, A., Ortoleva, P., “ Stability of reactive flows in porous media: coupled porosity and viscosity changes” , SIAM Journal of Applied Mathematics 31,684–692, 1991.
[7] Steefel, C.L., Lasaga, A.C., “ Evolution of dissolution patterns: permeability change due to coupled flow and reactions” , In: Melchior, D.C., Bassett, R.L. (Eds.), Chemical Modeling in Aqueous Systems II: American Chemical Society Symposium, Vol. 416. pp. 212–125, 1990.
[8] Chen, W., Ortoleva, P., “ Reaction front fingering in carbonate-cemented sandstones” , Earth Science Reviews 29,183–198, 1990.
[9] Liu, X., Ormond, A., Bartko, K., Li, Y., Ortoleva, P., “ A geochemical reaction-transport simulator for matrix aciding analysis andd esign” , Journal of Petroleum Science &Engineering 17, 181–196, 1997.
[10] Renard, F., Gratier, J-P., Ortoleva, P., Brosse, E., Bazin, B., “ Self-organization during reactive fluid flow in a porous medium” , Geophysical Research Letters 25 (3),385–388, 1998.
[11] Emmanuel, S., and B.Berkowitz, “ Mixing-induced precipitation and porosity evolution in porous media, Advances in Water Resources” , vol. 28, pp. 337-344, 2005.
[12] J. S. Chen, and C. W, Liu, “ Numerical simulation of the evolution of aquifer porosity and species concentrations during reactive transport” , Comput. Geosci. 28, 485–499, 2002.
[13] J. S. Chen, and C. W, Liu, “ Interaction of reactive fronts during transport in a homogeneous porous medium with initial small non-uniformity” , J. Contam. Hydrol., vol. 72, pp. 47-66, 2004.
[14] Singurindy, O., and B. Berkowitz, “ Evolution of hydraulic conductivity by precipitation and dissolution in carbonate rock” , Water Resources Research, Vol. 39(1), pp.1016, 2003.
[15] Singurindy, O., and B. Berkowitz, “ The role of fractures on coupled dissolution and precipitation patterns in carbonate rocks” , Advances in Water Resources, Vol. 28, pp. 507–521, 2005.
[16] Bear, J., Dynamics of Fluid in porous Media, Amsterdam: Elsevier, pp. 764, 1972.
[17] Burnett, R. D., and E. O., Frind, “An alternative direction Galerkin technique for simulation of groundwater contamination transport in three dimension, 2 dimensionality effects. Water Resources Research., Vol. 23(4), pp.695-705, 1987.
[18] Lerman, A., Geochemical Processes, New York: Wiley, pp.481, 1979.