| 研究生: |
蕭貫志 Kuan-Chih Hsiao |
|---|---|
| 論文名稱: |
博登量測器中軟骨細胞化學趨向性的模擬與分析 Simulation and analysis of chemotactic chondrocytes in a Boyden chamber |
| 指導教授: |
鍾志昂
Chih-Ang Chung |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 70 |
| 中文關鍵詞: | 軟骨細胞 、受體 、膠原蛋白 、化學趨向性 、博登量測器 |
| 外文關鍵詞: | receptor, chondrocyte, collagen, Boyden chamber, chemotaxis |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
細胞是組成生命的最基本單位,細胞的運動對生物現象具有廣泛的影響,例如:組織的生長,傷口治癒,發炎反應,或是癌細胞的散佈和轉移等行為都受細胞運動的影響。而細胞的運動與外界環境的刺激有關,必須由受體與刺激物質結合,藉由激活多種傳遞訊息路徑,細胞才會有所反應。
本文建立一個包含細胞、化學趨向因子與細胞表面受體三者的完整數學模型,並採用有限差分法來離散方程式,以模擬軟骨細胞於博登量測器中的沉積、隨機漫步和對第二型膠原蛋白的化學趨向性等現象。藉由擬合實驗結果而求得各項影響軟骨細胞的運動係數,包含受體與膠原蛋白間的結合與解離速率、隨機漫步和化學趨向性係數,並做無因次參數分析,以了解各參數的物理意義及影響。從模擬結果發現,細胞的沉積過程大約需要三個小時,一些學者忽略了此現象,因此只考慮薄膜中的細胞行為是不合理的。本文建立的模型可完整描述博登量測器中,細胞沉積對量測細胞運動的影響,增加量測結果與測定細胞運動係數的準確性。
Cell is the most fundamental unit of life. Cell locomotion has extensive influences, including tissue development, wound healing, and inflammation, as well as tumor cell dissemination and metastasis. Cellular interactions with the extracellular stimuli are regulated by cell surface receptors which mediate a range of different signal paths.
This work develops a full mathematical model including cell, chemoattractant, and receptors on the cell surface, simulating the phenomenon incorporating cell sedimentation, random walks, and chemotaxis of chondrocytes to type II collage in the Boyden chamber assay, which is calculated using the finite difference method. By fitting the experimental data, we determine the cell random motility, chemotactic coefficient, and the rates for the processes of association and dissociation of the receptor-chemical complex. In order to understand the physical meaning and influence of each parameter, we use the dimensionless parameters analysis. Simulation results show the cell sedimentation lasts about three hours, so it is not reasonable to ignore this event. The current model can describe the full processes of cell transport in a Boyden chamber assay, and therefore increases the measuring accuracy for quantifying cell locomotion coefficients.
Alder, J., 1966. Chemotaxis in bacteria. Science 153, 708-716.
Boyden, S.V., 1962. The chemotactic effect of mixture of antibody and antigen on polymorphonuclear leukocyte. The Journal of Experimental Medicine 115, 453-466.
Byrne, H.M., Cave, G., and McElwain, D.L.S., 1998. The effect of chemotaxis and chemokinesis on leukocyte locomotion: A new interpretation of experimental results. Mathematical Medicine and Biology 15, 235-256.
Carter, S.B., 1965. Principles of cell motility: The direction of cell movement and cancer invasion. Nature 18, 1183-1187.
Chang, C., Lauffenburger, D.A., and Morales, T.I., 2003. Motile chondrocytes from newborn calf: Migration properties and synthesis of collagen II. OsteoArthritis and Cartilage 11, 603-612.
Chao, P.H.G., Roy, R., Mauck, R.L., Liu, W., Valhmu, W.B., and Hung, C.T., 2000. Chondrocyte translocation response to direct current electric fields. Journal of Biomechanical Engineering 122, 261-267.
Cengel, Y.A., Boles, M.A., 2002. Thermodynamics an engineering approach. 4th ed. McGraw Hill. New York. p. 88.
Chung, C.A., Chen, C.W., Chen, C.P., and Tseng, C.S., 2007. Enhancement of cell growth in tissue-engineering constructs under direct perfusion: Modeling and simulation. Biotechnology and Bioengineering 97, 1603-1616.
Coletti, F., Macchietto, S., and Elvassore, N., 2006. Mathematical modeling of three-dimensional cell cultures in perfusion bioreactors. Industrial and Engineering Chemistry Research 45, 8158-8169.
DiMilla, P.A., Quinn, J.A., Albelda, S.M., and Lauffenburger, D.A., 1992.
Measurement of individual cell migration parameters for human tissue cells. AIChE Journal 38, 1092-1104.
Friedl, P., Bröcker, E.B., 2000. The biology of cell locomotion within three- dimensional extracellular matrix. Cellular and Molecular Life Sciences 57, 41-64.
Galban, C.J., Locke, B.R., 1997. Analysis of cell growth in a polymer scaffold using a moving boundary approach. Biotechnology and Bioengineering 56, 422-432.
Gelman, R.A., Piez,K.A., 1980. Collagen fibril formation in vitro. The Journal of Biological Chemistry 255, 8098-8102.
Hadjout, N., Laevsky, G., Knecht, D.A., and Lynes, M.A., 2001. Automated real-time measurement of chemotactic cell motility. Biotechniques 31, 1130-1138.
Itani, T., Kanai, K., Watanabe, J., Ogawa, R., and Kanamura, S., 1992. Quantitative analysis of rough endoplasmic reticulum in chondrocytes of articular and tracheal cartilage of rabbits following the systemic administration of hydrocortisone. Journal of Anatomy 181, 357-363.
Keller, E.F., Segel, L.A., 1970. Initiation of slime-mold aggregation viewed as an instability. Journal of Theoretical Biology 26, 399-415.
Lauffenburger, D.A., Horwitz, A.F., 1996. Cell migration: A physically integrated molecular process. Cell 84, 359-369.
Lauffenburger, D.A., Linderman, J.J., 1993. Receptors models for binding, trafficking, and signaling. Oxford University Press. New York. Chapter 6.
Lapidus, I.R., Schiller, R., 1976. Model for the chemotactic response of a bacterial population. Biophysical Journal 16, 779-798.
Loeser, R.F., 2002, Integrins and cell signaling in chondrocytes. Biorheology 39, 119-124.
Mackie, J.S., Meares, P., 1955a. The diffusion of electrolytes in a cation-exchange resin membrane. I. Theoretical. Proceedings of the Royal Society of London. Series A, Mathematical and Physical 232, 498-509.
Mackie, J.S., Meares, P., 1955b. The diffusion of electrolytes in a cation-exchange resin membrane. II. Experimental. Proceedings of the Royal Society of London. Series A, Mathematical and Physical 232, 510-518.
Magdalena, L., Alexandra, C.R., Leah, E.K., and Alex M., 2003. Chemotactic signaling, microglia, and Alzheimer’s disease senile plaques: Is there a connection? Bulletin of Mathematical Biology 65, 693-730.
MacArthur, B.D., Please, C.P., and Plettet, G.J., 2005. A mathematical model of dynamic glioma-host interactions: Receptor-mediated invasion and local proteolysis. Mathematical Medicine and Biology 22, 247-264.
Mason, M., Weaver, W., 1924. The settling of small particles in a fluid. Physical Review 23, 412-426.
Murray, J.D., Oster, G.F., 1984. Cell traction models for generating pattern and form in morphogenesis. Journal of Mathematical Biology 19, 265-279.
Noble, P.B., Levine, M.D., 2000. Computer-assisted analyses of cell locomotion and chemotaxis. CRC Press. Boca Raton. pp. 13-14.
Olsen, L., Sherratt, J.A., Maini, P.K., and Arnold, F., 1997. A mathematical model for the capillary endothelial cell-extracellular matrix interactions in wound-healing angiogenesis. IMA Journal of Mathematics Applied in Medicine and Biology 14, 261-281.
Oster, G.F., Murray, J.D., and Harris, A.K., 1983. Mechanical aspects of mesenchymal morphogenesis. Journal of Embroyology and Experimental Eorphology 78, 83-125.
Richardson, J.F., Meikle, R.A., 1961. Sedimentation and fluidization part III: The sedimentation of uniform thine particles and of two-component mixtures of solids. Transactions of the Institute of Chemical Engineers 39, 356-348.
Richardson, J.F., Zaki, W.N., 1954. Sedimentation and fluidization: Part I. Transactions of the Institute of Chemical Engineers 32, 35-53.
Sherratt, J.A., 1994. Chemotaxis and chemokinesis in eukaryotic cells: The Keller-Segel equations as an approximation to a detailed model. Bulletin of Mathematical Biology 56, 129-146.
Sherratt, J.A., Sage, E.H., and Murray, J.D., 1993. Chemical control of eukaryotic cell movement: A new model. Journal of Theoretical Biology 162, 23-40.
Shimizu, M., Minakuchi, K., Kaji, S., and Koga, J., 1997. Chondrocyte migration to fibronectine, type I collagen, and type II collagen. Cell Structure and Function 22, 309-315.
Sullivan, S.J., Zigmond, S.H., 1980. Chemotactic peptide receptor modulation in polymorphonuclear leukocytes. Journal of Cell Biology 85, 703-711.
Takeuchi, A., Persellin, R.H., 1979. Cellular augmentation of polymorphonuclear leukocyte chemotaxis. American Journal of Physiology 236, C22-C29.
Wesselingh, J.A., Krishna, R., 2000. Mass transfer in multicomponent mixtures. VSSD. Delft. pp. 36-40.
Woodward, D.E., Tyson, R., Myerscough, M.R., Murrary, J.D., Budrene, E.O., and Berg, H.C., 1995. Spatio-temporal patterns generated by Salmonella typhimurium. Biophysical Journal 68, 2181-2189.
Yashiki, S., Umegaki, R., Kino-Oka, M., and Taya, M., 2001. Evaluation of attachment and growth of anchorage-dependent cells on culture surfaces with type I collagen coating. Journal of Bioscience and Bioengineering 92, 385-388.
Zumdahl, S.S., 2005. Chemical Principles. 5th ed. Houghton Mifflin. Boston. p. 54.