| 研究生: |
陳可翰 Ko-Han Chen |
|---|---|
| 論文名稱: |
透過原子系統建立雷射功率標準的提案與演示 A Proposal and Demonstration on Setting up Laser Power Standard via Atom System |
| 指導教授: |
鄭王曜
Wang-Yau Cheng 井上優貴 Yuki Inoue |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 英文 |
| 論文頁數: | 188 |
| 中文關鍵詞: | 銫原子 、光功率標準 、雙光子躍遷 |
| 外文關鍵詞: | Cesium atom, Power standard, Two-photon transition |
| 相關次數: | 點閱:20 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出了一種基於銫原子 6S1/2 → 7S1/2 雙光子躍遷的創新光功率量測方法。通
過研究原子躍遷中的 ACStark 頻移,本研究為建立功率量測標準奠定了基礎。在重力
波觀測中,準確的絕對功率量測對於確定重力波事件源的距離至關重要。然而,現有
的功率量測系統因感測器老化及量子效率不一致,導致測量結果存在偏差,需頻繁進
行校正。原子躍遷提供了一種克服這些限制的方法,使光功率量測更具穩定性和可重
現性。
本研究開發了一套基於原子的光功率量測系統,整合了碘穩頻雷射、偏頻鎖定技術
以及腔體增強的雙光子吸收光譜技術。碘穩頻雷射提供了不受 ACStark 頻移影響的頻
率基準,偏頻鎖定則將其穩定性轉移至從屬雷射。透過利用光強度與 ACStark 頻移之
間的線性關係,系統可實現準確且寬量測範圍的功率量測。腔體增強設計確保光束的
波形與原子束交互區域良好定義,進一步降低不確定性。
該系統展示了 0.56 kHz/mW 的功率頻率響應度,可量測功率的解析度為 5.4 mW,
實驗可重置性為 3 kHz。目前光功率的不準度為 ∆P /P = 7 %,突顯此系統作為未來功
率校正標準基礎的潛力。
This dissertation introduces an innovative approach to optical power measurement using the
cesium 6S1/2 → 7S1/2 twophoton transition. The investigation of the ACStark shift in atomic
transitions serves as a foundation for developing a power measurement standard. In gravitational
wave observatories, accurate absolute power measurements are essential for determining source
distances of gravitational wave events. However, the existing power measurement systems suf
fer from inconsistencies due to sensor aging and varying quantum efficiencies, necessitating
routine recalibrations. Atomic transitions provide a pathway to overcome these limitations by
enabling robust, reproducible, and digital optical power measurements.
The atombased power measurement system developed in this work integrates an iodine
stabilized laser, offsetlocking technique, and cavityenhanced twophoton absorption spec
troscopy. The iodinestabilized laser offers a frequency reference immune to the ACStark shift,
while offsetlocking transfers its stability to the slave laser. By leveraging the linear relation
ship between optical intensity and the ACStark shift, the system enables accurate and wide
range power measurements. The cavityenhanced design ensures welldefined beam profiles
and crosssectional areas for atombeam interactions, minimizing uncertainties.
The system demonstrates a powerfrequency conversion factor of 0.56 kHz/mW, achieving
the power measurement resolution of 5.4 mW and a resettability of spectral measurements of
3 kHz. The current power measurement uncertainty is ∆P /P = 7 % under typical operating
conditions, highlighting the potential of this system as a foundation for future power calibration
standards.
[1] M. Spidell, J. Lehman, M. López, H. Lecher, and S. Kück, “A bilateral comparison of
nist and ptb laser power standards for scale realization confidence by gravitational wave
observatories,” Metrologia, vol. 58, no. 5, p. 055011, 2021.
[2] D. Bhattacharjee, R. L. Savage, R. Bajpai, J. Betzwieser et al., “Calibrating the global
network of gravitational wave observatories via laser power calibration at nist and ptb,”
Metrologia, vol. 61, no. 1, 2024.
[3] C. M. Wu, W. Y. Cheng, and R. K. Lee, “Cesium 6S1/2 → 8S1/2 twophoton transition
stabilized 822.5nm diode laser,” in 2008 Conference on Precision Electromagnetic Mea
surements. IEEE, 2008, p. 180.
[4] C. M. Wu, T. W. Liu, M. H. Wu, R. K. Lee, and W. Y. Cheng, “Absolute frequency of
cesium 6S–8S 822 nm twophoton transition by a highresolution scheme,” Optics Letters,
vol. 38, no. 16, p. 3186, 2013.
[5] P. A. Williams, M. T. Spidell, J. A. Hadler, and T. Gerrits, “Metastudy of laser power
calibrations ranging 20 orders of magnitude with traceability to the kilogram,” Metrologia,
vol. 56, no. 5, p. 015001, 2019.
[6] David Livigni, “HighAccuracy Laser Power and Energy Meter Calibration Service (NIST
SP 25062),” 20030801 2003.
[7] P. Williams, J. Hadler, F. Maring, R. Lee, and K. Rogers, “Portable, highaccuracy, non
absorbing laser power measurement at kilowatt levels by means of radiation pressure,”
Optics Express, vol. 25, no. 4, p. 4382, 2017.
[8] S. Kück, “Final report on euromet comparison euromet.prs2 (project no. 156): Respon
sivity of detectors for radiant power of lasers,” Metrologia, vol. 47, no. 1A, p. 02003,
2010.
147
[9] A. K. Vaskuri, M. S. Stephens, N. A. Tomlin, M. T. Spidell et al., “Highaccuracy room
temperature planar absolute radiometer based on vertically aligned carbon nanotubes,”
Optics Express, vol. 29, no. 14, p. 22533, 2021.
[10] M. A. Bouchiat and C. Bouchiat, “Parity violation induced by weak neutral currents in
atomic physics,” Journal de Physique, vol. 35, no. 12, p. 899, 1974.
[11] R. N. Watts, S. L. Gilbert, and C. E. Wieman, “Precision measurement of the Stark shift of
the 6S7S transition in atomic cesium,” Physical Review A, vol. 27, no. 6, p. 2769, 1983.
[12] Y. Tian, P. Yang, W. Wu, S. Li, and G. Li, “Precision measurement of cesium 6S–7S two
photon spectra with single trapped atoms,” Japanese Journal of Applied Physics, vol. 58,
no. 4, p. 042002, 2019.
[13] B. P. Abbott, R. Abbott, T. D. Abbott, M. R. Abernathy, F. Acernese, K. Ackley, C. Adams,
and et al., “Observation of gravitational waves from a binary black hole merger,” Phys. Rev.
Lett., vol. 116, p. 061102, 2016.
[14] Jordan B. Camp, “The Status of Gravitational Wave Astronomy,” in , 2004.
[15] LIGO Scientific Collaboration, “Analyzing Elastic Deformation of Test Masses in
LIGO,” https://dcc.ligo.org/public/0004/T0900401/001/T0900401.pdf, 2009, LIGO Tech
nical Document, T0900401.
[16] Y. Inoue, B. H. Hsieh, K. H. Chen, Y. K. Chu, and K. Ito, “Development of advanced pho
ton calibrator for Kamioka gravitational wave detector (KAGRA),” Review of Scientific
Instruments, vol. 94, no. 7, p. 074502, 2023.
[17] E. Goetz, P. Kalmus, S. Erickson et al., “Precise calibration of LIGO test mass actua
tors using photon radiation pressure,” Classical and Quantum Gravity, vol. 26, no. 24, p.
245011, 2009.
[18] D. Bhattacharjee, Y. Lecoeuche, S. Karki et al., “Fiducial displacements with improved
accuracy for the global network of gravitational wave detectors,” Classical and Quantum
Gravity, vol. 37, no. 10, p. 015009, 2020.
148
[19] LIGO Scientific Collaboration, “Photon Calibrator Final Design,” https://dcc.ligo.
org/public/0032/T1100068/023/PhotonCalibratorFinalDesign.pdf, 2014, LIGO Technical
Document, T1100068.
[20] A. Kaplan, M. F. Andersen, and N. Davidson, “Suppression of inhomogeneous broadening
in rf spectroscopy of optically trapped atoms,” Physical Review A, vol. 66, no. 4, p. 045401,
2002.
[21] D. D. Yavuz, N. R. Brewer, J. A. Miles, and Z. J. Simmons, “Suppression of inhomoge
neous broadening using the ac stark shift,” Physical Review A, vol. 88, no. 6, p. 063836,
2013.
[22] F. Yang, X. Wang, J. Ruan, J. Shi, S. Fan, Y. Bai, and Y. Guan, “Experimental evaluation
of the blackbody radiation shift in the cesium atomic fountain clock,” Applied Sciences,
vol. 12, no. 1, p. 510, 2022.
[23] G. A. Costanzo, S. Micalizio, A. Godone, and J. C. Camparo, “ac stark shift measurements
of the clock transition in cold cs atoms: Scalar and tensor light shifts of the transition,”
Physical Review A, vol. 93, no. 6, p. 063404, 2016.
[24] N. B. Delone and V. P. Krainov, “AC Stark shift of atomic energy levels,” PhysicsUspekhi,
vol. 42, no. 7, p. 669, 1999.
[25] R. Grimm, M. Weidemüller, and Y. Ovchinnikov, “Optical dipole traps for neutral atoms,”
Advances in Atomic, Molecular, and Optical Physics, vol. 42, p. 95, 2000.
[26] B. J. Sussman, “Five ways to the nonresonant dynamic stark effect,” American Journal of
Physics, vol. 79, no. 5, p. 477, 2011.
[27] M. Haas, U. D. Jentschura, and C. H. Keitel, “Comparison of classical and second quan
tized description of the dynamic Stark shift,” American Journal of Physics, vol. 74, no. 1,
p. 77, 2006.
149
[28] M. S. Safronova, W. R. Johnson, and A. Derevianko, “Relativistic manybody calculations
of energy levels, hyperfine constants, electricdipole matrix elements, and static polariz
abilities for alkalimetal atoms,” Physical Review A, vol. 60, p. 4476, 1999.
[29] G. Toh, A. Damitz, C. E. Tanner, W. R. Johnson, and D. S. Elliott, “Determination of the
scalar and vector polarizabilities of the cesium 6s2s1/2 → 7s2s1/2 transition and impli
cations for atomic parity nonconservation,” Physical Review Letters, vol. 123, p. 073002,
2019.
[30] V. Gerginov, K. Calkins, C. E. Tanner, J. J. McFerran, S. Diddams, A. Bartels, and L. Holl
berg, “Optical frequency measurements of 6s2s1/2 − 6p2p1/2 (d1) transitions in 133Cs and
their impact on the finestructure constant,” Physical Review A, vol. 73, p. 032504, 2006.
[31] G. Grynberg, “Dopplerfree multiphoton excitation: light shift and saturation,” Journal
de Physique, vol. 40, no. 7, p. 657, 1979.
[32] W. M. McClain and R. A. Harris, “Twophoton molecular spectroscopy in liquids and
gases,” in Excited States. Academic Press, 1977, p. specific pages needed.
[33] K. K. Lehmann, “Optical cavity with intracavity twophoton absorption,” Journal of the
Optical Society of America B, vol. 37, no. 10, p. 3055, 2020.
[34] L. Li, B. X. Yang, and P. M. Johnson, “Alternatingcurrent Starkeffect line shapes in
multiphoton ionization spectra,” Journal of the Optical Society of America B, vol. 2, no. 5,
p. 748, 1985.
[35] M. Rumi and J. W. Perry, “Twophoton absorption: an overview of measurements and
principles,” Advances in Optics and Photonics, vol. 2, no. 4, p. 451, 2010.
[36] R. Paschotta, “Gaussian Beams,” RP Photonics Encyclopedia.
[37] B. Girard, G. O. Sitz, R. N. Zare, and N. Billy, “Polarization dependence of the ac Stark
effect in multiphoton transitions of diatomic molecules,” The Journal of Chemical Physics,
vol. 97, no. 1, p. 26, 1992.
150
[38] C.Y. Chang, “Study on the R(81)290 hyperfine transitions of iodine molecule (127I2) for
539.5nm diode laser stabilization,” Master’s thesis, National Central University, 2022.
[Online]. Available: https://hdl.handle.net/11296/n7h49s
[39] W. Y. Cheng, T. J. Chen, C. W. Lin, B. W. Chen, and Y. P. Yang, “Robust submillihertz
level offset locking for transferring optical frequency accuracy and for atomic twophoton
spectroscopy,” Optics Express, vol. 25, no. 3, p. 2752, 2017.
[40] G. W. O. S. Center, “Componentlibrary,” https://www.gwoptics.org/ComponentLibrary/.
[41] W. Y. Cheng and J. T. Shy, “Wavelength standard at 543 nm and the corresponding 127I2
hyperfine transitions,” Journal of the Optical Society of America B, vol. 18, no. 3, p. 363,
2001.
[42] T. J. Quinn, “Mise en Pratique of the Definition of the Metre (1992),” Metrologia, vol. 30,
no. 5, p. 445, 1994.
[43] J. Zhang, Z. H. Lu, and L. J. Wang, “Absolute frequency measurement of the molecular
iodine hyperfine components near 560 nm with a solidstate laser source,” Applied Optics,
vol. 48, no. 29, p. 5629, 2009.
[44] Y. C. Huang, H. C. Chen, S. E. Chen, J. T. Shy, and L. B. Wang, “Precise frequency mea
surements of iodine hyperfine transitions at 671 nm,” Applied Optics, vol. 52, no. 7, p.
1448, 2013.
[45] W. Y. Cheng, J. T. Shy, and T. Lin, “A compact iodinestabilized HeNe laser and crossover
resonances at 543 nm,” Optics Communications, vol. 155, no. 46, p. 314, 1998.
[46] W. Y. Cheng and J. T. Shy, “Lambdip stabilized 543nm HeNe lasers and isotope shift of
Ne 3s22p10 transition,” Applied Physics B, vol. 70, no. 2, p. 305, 2000.
[47] W. Y. Cheng, J. T. Shy, T. Lin, and C. C. Chou, “Molecular iodine spectra and laser stabi
lization by frequencydoubled 1534 nm diode laser,” Japanese Journal of Applied Physics,
vol. 44, no. 5, p. 3055, 2005.
151
[48] R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, and G. M. Ford, “Laser phase and
frequency stabilization using an optical resonator,” Applied Physics B, vol. 31, no. 2, p. 97,
1983.
[49] E. D. Black, “An introduction to Pound–Drever–Hall laser frequency stabilization,”
American Journal of Physics, vol. 69, no. 1, p. 79, 2001.
[50] G. C. Bjorklund, “Frequencymodulation spectroscopy: a new method for measuring weak
absorptions and dispersions,” Optics Letters, vol. 5, no. 1, p. 15, 1980.
[51] L. J. Gillespie and L. H. D. Fraser, “The normal vapor pressure of crystalline iodine,”
Journal of the American Chemical Society, vol. 58, no. 11, p. 2260, 1936.
[52] I. Blanco, G. Cicala, G. Recca, and C. Tosto, “Specific heat capacity and thermal conduc
tivity measurements of plabased 3dprinted parts with milled carbon fiber reinforcement,”
Entropy, vol. 24, p. 654, 2022.
[53] S. FredinPicard, “A study of contamination in 127I2 cells using laserinduced fluores
cence,” Metrologia, vol. 26, no. 4, p. 233, 1989.
[54] M. Zucco, L. Robertsson, and J. P. Wallerand, “Laserinduced fluorescence as a tool to ver
ify the reproducibility of iodinebased laser standards: a study of 96 iodine cells,” Metrolo
gia, vol. 50, no. 4, p. 402, 2013.
[55] J. Hrabina, M. Zucco, C. Philippe, T. M. Pham, and M. Holá, “Iodine absorption cells
purity testing,” Sensors, vol. 17, no. 1, p. 102, 2017.
[56] D. Romanini, I. Ventrillard, G. Méjean, J. Morville, and E. Kerstel, “Introduction to cav
ity enhanced absorption spectroscopy,” in CavityEnhanced Spectroscopy and Sensing.
Springer, 2014, p. 1.
[57] J. Zhou, W. Zhao, Y. Zhang, B. Fang, and F. Cheng, “Amplitudemodulated cavity
enhanced absorption spectroscopy with phasesensitive detection: a new approach applied
to the fast and sensitive detection of NO2,” Analytical Chemistry, vol. 94, no. 2, p. 874,
2022.
152
[58] R. F. Offer, J. W. C. Conway, E. Riis, and S. FrankeArnold, “Cavityenhanced frequency
upconversion in rubidium vapor,” Optics Letters, vol. 41, no. 10, p. 2177, 2016.
[59] K. Durak, C. H. Nguyen, V. Leong, and S. Straupe, “Diffractionlimited fabry–perot cav
ity in the near concentric regime,” New Journal of Physics, vol. 16, no. 10, p. 103002,
2014.
[60] H. Telfah, A. C. Paul, and J. Liu, “Aligning an optical cavity: with reference to cavity
ringdown spectroscopy,” Applied Optics, vol. 59, no. 30, p. 9464, 2020.
[61] M. Lisi, “A Review of Temperature Compensation Techniques for Microwave Resonators
and Filters,” in A Review of Temperature Compensation Techniques for Microwave Res
onators and Filters, 11 2014.
[62] K. M. Baird, “Compensation for linear thermal expansion,” Metrologia, vol. 4, no. 3, p.
102, 1968.
[63] J. Zhang, Y. Luo, B. Ouyang, K. Deng, and Z. Lu, “Design of an optical reference cavity
with low thermal noise limit and flexible thermal expansion properties,” The European
Physical Journal D, vol. 67, p. 208, 2013.
[64] T. Legero, T. Kessler, and U. Sterr, “Tuning the thermal expansion properties of optical
reference cavities with fused silica mirrors,” Journal of the Optical Society of America B,
vol. 27, no. 5, p. 914, 2010.
[65] O. Svelto, Principles of Lasers, 5th ed. Springer New York, NY, 2010, see pp. 131–179.
[66] N. Ismail, C. C. Kores, D. Geskus, and M. Pollnau, “FabryPérot resonator: spectral line
shapes, generic and related Airy distributions, linewidths, finesses, and performance at low
or frequencydependent reflectivity,” Optics Express, vol. 24, no. 15, p. 16366, 2016.
[67] F. Biraben, M. Bassini, and B. Cagnac, “Lineshapes in dopplerfree twophoton spec
troscopy. the effect of finite transit time,” Journal de Physique, vol. 40, no. 5, p. 445,
1979.
153
[68] D. Coyne, “LIGO Vacuum Compatible Materials List,” LIGO Laboratory / LIGO Scien
tific Collaboration, California, Working Note QCL202305, 2004.
[69] P. Fulda, D. Voss, C. Mueller, L. F. Ortega, G. Ciani, G. Mueller, and D. B. Tanner, “Align
ment sensing for optical cavities using radiofrequency jitter modulation,” Applied Optics,
vol. 56, no. 13, p. 3879, May 2017.
[70] A. Grinin, A. Matveev, D. C. Yost, L. Maisenbacher, V. Wirthl, R. Pohl, T. W. Hänsch, and
T. Udem, “Twophoton frequency comb spectroscopy of atomic hydrogen,” Science, vol.
370, no. 6520, p. 1061, 2020.
[71] T. W. Hänsch and B. Couillaud, “Laser frequency stabilization by polarization spec
troscopy of a reflecting reference cavity,” Optics Communications, vol. 35, no. 3, p. 441,
1980.
[72] Y. Guan, C. Bandutunga, and M. B. Gray, “Using polarization to measure absorption in
cavity enhanced spectroscopy,” in Optics and Photonics for Sensing the Earth 2021. Op
tica Publishing Group, 2021.
[73] M. Vainio, J. E. Bernard, and L. Marmet, “Cavityenhanced optical frequency doubler
based on transmissionmode Hänsch–Couillaud locking,” Applied Physics B, vol. 105,
no. 3, p. 683, 2011.