跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳可翰
Ko-Han Chen
論文名稱: 透過原子系統建立雷射功率標準的提案與演示
A Proposal and Demonstration on Setting up Laser Power Standard via Atom System
指導教授: 鄭王曜
Wang-Yau Cheng
井上優貴
Yuki Inoue
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 188
中文關鍵詞: 銫原子光功率標準雙光子躍遷
外文關鍵詞: Cesium atom, Power standard, Two-photon transition
相關次數: 點閱:20下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出了一種基於銫原子 6S1/2 → 7S1/2 雙光子躍遷的創新光功率量測方法。通
    過研究原子躍遷中的 AC­Stark 頻移,本研究為建立功率量測標準奠定了基礎。在重力
    波觀測中,準確的絕對功率量測對於確定重力波事件源的距離至關重要。然而,現有
    的功率量測系統因感測器老化及量子效率不一致,導致測量結果存在偏差,需頻繁進
    行校正。原子躍遷提供了一種克服這些限制的方法,使光功率量測更具穩定性和可重
    現性。
    本研究開發了一套基於原子的光功率量測系統,整合了碘穩頻雷射、偏頻鎖定技術
    以及腔體增強的雙光子吸收光譜技術。碘穩頻雷射提供了不受 AC­Stark 頻移影響的頻
    率基準,偏頻鎖定則將其穩定性轉移至從屬雷射。透過利用光強度與 AC­Stark 頻移之
    間的線性關係,系統可實現準確且寬量測範圍的功率量測。腔體增強設計確保光束的
    波形與原子束交互區域良好定義,進一步降低不確定性。
    該系統展示了 0.56 kHz/mW 的功率頻率響應度,可量測功率的解析度為 5.4 mW,
    實驗可重置性為 3 kHz。目前光功率的不準度為 ∆P /P = 7 %,突顯此系統作為未來功
    率校正標準基礎的潛力。


    This dissertation introduces an innovative approach to optical power measurement using the
    cesium 6S1/2 → 7S1/2 two­photon transition. The investigation of the AC­Stark shift in atomic
    transitions serves as a foundation for developing a power measurement standard. In gravitational
    wave observatories, accurate absolute power measurements are essential for determining source
    distances of gravitational wave events. However, the existing power measurement systems suf­
    fer from inconsistencies due to sensor aging and varying quantum efficiencies, necessitating
    routine recalibrations. Atomic transitions provide a pathway to overcome these limitations by
    enabling robust, reproducible, and digital optical power measurements.
    The atom­based power measurement system developed in this work integrates an iodine­
    stabilized laser, offset­locking technique, and cavity­enhanced two­photon absorption spec­
    troscopy. The iodine­stabilized laser offers a frequency reference immune to the AC­Stark shift,
    while offset­locking transfers its stability to the slave laser. By leveraging the linear relation­
    ship between optical intensity and the AC­Stark shift, the system enables accurate and wide­
    range power measurements. The cavity­enhanced design ensures well­defined beam profiles
    and cross­sectional areas for atom­beam interactions, minimizing uncertainties.
    The system demonstrates a power­frequency conversion factor of 0.56 kHz/mW, achieving
    the power measurement resolution of 5.4 mW and a resettability of spectral measurements of
    3 kHz. The current power measurement uncertainty is ∆P /P = 7 % under typical operating
    conditions, highlighting the potential of this system as a foundation for future power calibration
    standards.

    摘要 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1.1 Power Calibration Methods . . . . . . . . . . . . . . . . . . . . . . . 4 1.1.2 Primary Standards at NIST . . . . . . . . . . . . . . . . . . . . . . . . 5 1.1.3 The Evolution of Power Meters in Gravitational Wave Observations . . 7 1.1.4 The Cesium 6S → 7S Two­photon Transition . . . . . . . . . . . . . . 10 1.2 Organization of the Paper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.3 Technical Terms and Definitions . . . . . . . . . . . . . . . . . . . . . . . . . 13 2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.1 Photon Calibrator: Principles and Applications in Gravitational Wave Observa­ tories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.1.2 The Importance of Power Stability in the Principles of Photon Calibration 16 2.1.3 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.1.4 Performance of the Photon Calibrator . . . . . . . . . . . . . . . . . . 21 2.1.5 The Calibration Model of the Mirror Displacement . . . . . . . . . . . 24 2.2 The AC­Stark shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.2.2 The AC­Stark Shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.2.3 The Floquet Theorem and the Quasi­Energy Spectrum . . . . . . . . . 29 ix 2.2.4 The General Cases of the Quasi­energy Levels . . . . . . . . . . . . . 30 2.2.5 The Calculation of the AC­Stark Shift in 6S → 7S, F = 4 → F = 4 Two­photon Transition . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.3 Two­Photon Transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 2.3.1 Principle of the Two­Photon Transition . . . . . . . . . . . . . . . . . 40 2.3.2 Intracavity Two­Photon Absorption . . . . . . . . . . . . . . . . . . . 43 2.4 The Cross­Sectional Area of the Atom­Beam Interaction . . . . . . . . . . . . 47 3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.1 Iodine­Stabilized Laser System . . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.1.1 The Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.1.2 The Pound­Drever­Hall Locking Method . . . . . . . . . . . . . . . . 57 3.1.3 Frequency Modulation Spectroscopy . . . . . . . . . . . . . . . . . . 59 3.1.4 The Temperature­Controlled Iodine Cell . . . . . . . . . . . . . . . . . 62 3.2 Fluorescence Detection Laser System . . . . . . . . . . . . . . . . . . . . . . 67 3.2.1 Laser Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 3.2.2 The Offset Locking Method . . . . . . . . . . . . . . . . . . . . . . . 69 3.2.3 Laser Power Stabilization . . . . . . . . . . . . . . . . . . . . . . . . 71 3.2.4 Fluorescence Detection System . . . . . . . . . . . . . . . . . . . . . 72 3.2.5 Power Monitoring System . . . . . . . . . . . . . . . . . . . . . . . . 73 3.3 Cavity­Enhanced Absorption Spectroscopy . . . . . . . . . . . . . . . . . . . 75 3.3.1 The Cavity Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 3.3.2 The Cesium Vapor Cell . . . . . . . . . . . . . . . . . . . . . . . . . . 80 3.3.3 Cavity Enhancement Factor . . . . . . . . . . . . . . . . . . . . . . . 81 3.3.4 Error Budget of the Cavity . . . . . . . . . . . . . . . . . . . . . . . . 87 3.3.5 The Cavity Stabilization Methods . . . . . . . . . . . . . . . . . . . . 88 3.4 The Power Measurement via the AC­Stark Shift of Atom System . . . . . . . . 91 3.4.1 The Experimental Procedure of the AC­Stark Shift Measurement . . . 91 3.4.2 The Estimation of Power Measurement Uncertainty . . . . . . . . . . . 92 3.5 The variable AC­Stark Shift Measurement with a Variable Slit . . . . . . . . . 93 x 3.5.1 The Experimental Step . . . . . . . . . . . . . . . . . . . . . . . . . . 94 4 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 4.1 Power Measurement Uncertainty of the Atom­Based System . . . . . . . . . . 99 4.1.1 The Specification of the Atom­Based Power Measurement System . . . 99 4.2 Evaluations on Each Error Source . . . . . . . . . . . . . . . . . . . . . . . . 105 4.2.1 Uncertainty in Iodine Pressure Shift from Temperature Instabilities . . 105 4.2.2 Uncertainty Due to Electronic Drift in Master Laser . . . . . . . . . . . 107 4.2.3 Uncertainty of Radio Frequency in AOM1,2 . . . . . . . . . . . . . . 108 4.2.4 Uncertainty of the Beat Frequency . . . . . . . . . . . . . . . . . . . . 110 4.2.5 Uncertainty of the AC­Stark Shift Due to Intracavity Power Fluctuations 113 4.2.6 The Long­Term Drift in the Atom­Based System . . . . . . . . . . . . 116 4.3 The Performance of the Pound­Drever­Hall Method . . . . . . . . . . . . . . . 117 4.4 Analysis of the AC­Stark Shift Fitting with Considering the Cross­Sectional Area of the Atom­Beam Interaction . . . . . . . . . . . . . . . . . . . . . . . 123 4.5 Other Possible Uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 4.5.1 Unique Linewidth Broadening Caused by the Inhomogeneous AC­Stark Shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 4.5.2 The AC­Stark Shift Varied by Detection Aperture . . . . . . . . . . . . 133 4.5.3 The Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . 133 5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 5.1 Summary of Key Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 5.2 Challenges and Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 5.3 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 Appendix A A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

    [1] M. Spidell, J. Lehman, M. López, H. Lecher, and S. Kück, “A bilateral comparison of
    nist and ptb laser power standards for scale realization confidence by gravitational wave
    observatories,” Metrologia, vol. 58, no. 5, p. 055011, 2021.

    [2] D. Bhattacharjee, R. L. Savage, R. Bajpai, J. Betzwieser et al., “Calibrating the global
    network of gravitational wave observatories via laser power calibration at nist and ptb,”
    Metrologia, vol. 61, no. 1, 2024.

    [3] C. M. Wu, W. Y. Cheng, and R. K. Lee, “Cesium 6S1/2 → 8S1/2 two­photon transition
    stabilized 822.5nm diode laser,” in 2008 Conference on Precision Electromagnetic Mea­
    surements. IEEE, 2008, p. 180.

    [4] C. M. Wu, T. W. Liu, M. H. Wu, R. K. Lee, and W. Y. Cheng, “Absolute frequency of
    cesium 6S–8S 822 nm two­photon transition by a high­resolution scheme,” Optics Letters,
    vol. 38, no. 16, p. 3186, 2013.

    [5] P. A. Williams, M. T. Spidell, J. A. Hadler, and T. Gerrits, “Meta­study of laser power
    calibrations ranging 20 orders of magnitude with traceability to the kilogram,” Metrologia,
    vol. 56, no. 5, p. 015001, 2019.

    [6] David Livigni, “High­Accuracy Laser Power and Energy Meter Calibration Service (NIST
    SP 250­62),” 2003­08­01 2003.

    [7] P. Williams, J. Hadler, F. Maring, R. Lee, and K. Rogers, “Portable, high­accuracy, non­
    absorbing laser power measurement at kilowatt levels by means of radiation pressure,”
    Optics Express, vol. 25, no. 4, p. 4382, 2017.

    [8] S. Kück, “Final report on euromet comparison euromet.pr­s2 (project no. 156): Respon­
    sivity of detectors for radiant power of lasers,” Metrologia, vol. 47, no. 1A, p. 02003,
    2010.

    147

    [9] A. K. Vaskuri, M. S. Stephens, N. A. Tomlin, M. T. Spidell et al., “High­accuracy room
    temperature planar absolute radiometer based on vertically aligned carbon nanotubes,”
    Optics Express, vol. 29, no. 14, p. 22533, 2021.

    [10] M. A. Bouchiat and C. Bouchiat, “Parity violation induced by weak neutral currents in
    atomic physics,” Journal de Physique, vol. 35, no. 12, p. 899, 1974.

    [11] R. N. Watts, S. L. Gilbert, and C. E. Wieman, “Precision measurement of the Stark shift of
    the 6S­7S transition in atomic cesium,” Physical Review A, vol. 27, no. 6, p. 2769, 1983.

    [12] Y. Tian, P. Yang, W. Wu, S. Li, and G. Li, “Precision measurement of cesium 6S–7S two­
    photon spectra with single trapped atoms,” Japanese Journal of Applied Physics, vol. 58,
    no. 4, p. 042002, 2019.

    [13] B. P. Abbott, R. Abbott, T. D. Abbott, M. R. Abernathy, F. Acernese, K. Ackley, C. Adams,
    and et al., “Observation of gravitational waves from a binary black hole merger,” Phys. Rev.
    Lett., vol. 116, p. 061102, 2016.

    [14] Jordan B. Camp, “The Status of Gravitational Wave Astronomy,” in , 2004.

    [15] LIGO Scientific Collaboration, “Analyzing Elastic Deformation of Test Masses in
    LIGO,” https://dcc.ligo.org/public/0004/T0900401/001/T0900401.pdf, 2009, LIGO Tech­
    nical Document, T0900401.

    [16] Y. Inoue, B. H. Hsieh, K. H. Chen, Y. K. Chu, and K. Ito, “Development of advanced pho­
    ton calibrator for Kamioka gravitational wave detector (KAGRA),” Review of Scientific
    Instruments, vol. 94, no. 7, p. 074502, 2023.

    [17] E. Goetz, P. Kalmus, S. Erickson et al., “Precise calibration of LIGO test mass actua­
    tors using photon radiation pressure,” Classical and Quantum Gravity, vol. 26, no. 24, p.
    245011, 2009.

    [18] D. Bhattacharjee, Y. Lecoeuche, S. Karki et al., “Fiducial displacements with improved
    accuracy for the global network of gravitational wave detectors,” Classical and Quantum
    Gravity, vol. 37, no. 10, p. 015009, 2020.

    148

    [19] LIGO Scientific Collaboration, “Photon Calibrator Final Design,” https://dcc.ligo.
    org/public/0032/T1100068/023/PhotonCalibratorFinalDesign.pdf, 2014, LIGO Technical
    Document, T1100068.

    [20] A. Kaplan, M. F. Andersen, and N. Davidson, “Suppression of inhomogeneous broadening
    in rf spectroscopy of optically trapped atoms,” Physical Review A, vol. 66, no. 4, p. 045401,
    2002.

    [21] D. D. Yavuz, N. R. Brewer, J. A. Miles, and Z. J. Simmons, “Suppression of inhomoge­
    neous broadening using the ac stark shift,” Physical Review A, vol. 88, no. 6, p. 063836,
    2013.

    [22] F. Yang, X. Wang, J. Ruan, J. Shi, S. Fan, Y. Bai, and Y. Guan, “Experimental evaluation
    of the blackbody radiation shift in the cesium atomic fountain clock,” Applied Sciences,
    vol. 12, no. 1, p. 510, 2022.

    [23] G. A. Costanzo, S. Micalizio, A. Godone, and J. C. Camparo, “ac stark shift measurements
    of the clock transition in cold cs atoms: Scalar and tensor light shifts of the transition,”
    Physical Review A, vol. 93, no. 6, p. 063404, 2016.

    [24] N. B. Delone and V. P. Krainov, “AC Stark shift of atomic energy levels,” Physics­Uspekhi,
    vol. 42, no. 7, p. 669, 1999.

    [25] R. Grimm, M. Weidemüller, and Y. Ovchinnikov, “Optical dipole traps for neutral atoms,”
    Advances in Atomic, Molecular, and Optical Physics, vol. 42, p. 95, 2000.

    [26] B. J. Sussman, “Five ways to the nonresonant dynamic stark effect,” American Journal of
    Physics, vol. 79, no. 5, p. 477, 2011.

    [27] M. Haas, U. D. Jentschura, and C. H. Keitel, “Comparison of classical and second quan­
    tized description of the dynamic Stark shift,” American Journal of Physics, vol. 74, no. 1,
    p. 77, 2006.

    149

    [28] M. S. Safronova, W. R. Johnson, and A. Derevianko, “Relativistic many­body calculations
    of energy levels, hyperfine constants, electric­dipole matrix elements, and static polariz­
    abilities for alkali­metal atoms,” Physical Review A, vol. 60, p. 4476, 1999.

    [29] G. Toh, A. Damitz, C. E. Tanner, W. R. Johnson, and D. S. Elliott, “Determination of the
    scalar and vector polarizabilities of the cesium 6s2s1/2 → 7s2s1/2 transition and impli­
    cations for atomic parity nonconservation,” Physical Review Letters, vol. 123, p. 073002,
    2019.

    [30] V. Gerginov, K. Calkins, C. E. Tanner, J. J. McFerran, S. Diddams, A. Bartels, and L. Holl­
    berg, “Optical frequency measurements of 6s2s1/2 − 6p2p1/2 (d1) transitions in 133Cs and
    their impact on the fine­structure constant,” Physical Review A, vol. 73, p. 032504, 2006.

    [31] G. Grynberg, “Doppler­free multi­photon excitation: light shift and saturation,” Journal
    de Physique, vol. 40, no. 7, p. 657, 1979.

    [32] W. M. McClain and R. A. Harris, “Two­photon molecular spectroscopy in liquids and
    gases,” in Excited States. Academic Press, 1977, p. specific pages needed.

    [33] K. K. Lehmann, “Optical cavity with intracavity two­photon absorption,” Journal of the
    Optical Society of America B, vol. 37, no. 10, p. 3055, 2020.

    [34] L. Li, B. X. Yang, and P. M. Johnson, “Alternating­current Stark­effect line shapes in
    multiphoton ionization spectra,” Journal of the Optical Society of America B, vol. 2, no. 5,
    p. 748, 1985.

    [35] M. Rumi and J. W. Perry, “Two­photon absorption: an overview of measurements and
    principles,” Advances in Optics and Photonics, vol. 2, no. 4, p. 451, 2010.

    [36] R. Paschotta, “Gaussian Beams,” RP Photonics Encyclopedia.

    [37] B. Girard, G. O. Sitz, R. N. Zare, and N. Billy, “Polarization dependence of the ac Stark
    effect in multiphoton transitions of diatomic molecules,” The Journal of Chemical Physics,
    vol. 97, no. 1, p. 26, 1992.

    150

    [38] C.­Y. Chang, “Study on the R(81)29­0 hyperfine transitions of iodine molecule (127I2) for
    539.5­nm diode laser stabilization,” Master’s thesis, National Central University, 2022.
    [Online]. Available: https://hdl.handle.net/11296/n7h49s

    [39] W. Y. Cheng, T. J. Chen, C. W. Lin, B. W. Chen, and Y. P. Yang, “Robust sub­millihertz­
    level offset locking for transferring optical frequency accuracy and for atomic two­photon
    spectroscopy,” Optics Express, vol. 25, no. 3, p. 2752, 2017.

    [40] G. W. O. S. Center, “Componentlibrary,” https://www.gwoptics.org/ComponentLibrary/.

    [41] W. Y. Cheng and J. T. Shy, “Wavelength standard at 543 nm and the corresponding 127I2
    hyperfine transitions,” Journal of the Optical Society of America B, vol. 18, no. 3, p. 363,
    2001.

    [42] T. J. Quinn, “Mise en Pratique of the Definition of the Metre (1992),” Metrologia, vol. 30,
    no. 5, p. 445, 1994.

    [43] J. Zhang, Z. H. Lu, and L. J. Wang, “Absolute frequency measurement of the molecular
    iodine hyperfine components near 560 nm with a solid­state laser source,” Applied Optics,
    vol. 48, no. 29, p. 5629, 2009.

    [44] Y. C. Huang, H. C. Chen, S. E. Chen, J. T. Shy, and L. B. Wang, “Precise frequency mea­
    surements of iodine hyperfine transitions at 671 nm,” Applied Optics, vol. 52, no. 7, p.
    1448, 2013.

    [45] W. Y. Cheng, J. T. Shy, and T. Lin, “A compact iodine­stabilized HeNe laser and crossover
    resonances at 543 nm,” Optics Communications, vol. 155, no. 4­6, p. 314, 1998.

    [46] W. Y. Cheng and J. T. Shy, “Lamb­dip stabilized 543­nm He­Ne lasers and isotope shift of
    Ne 3s22p10 transition,” Applied Physics B, vol. 70, no. 2, p. 305, 2000.

    [47] W. Y. Cheng, J. T. Shy, T. Lin, and C. C. Chou, “Molecular iodine spectra and laser stabi­
    lization by frequency­doubled 1534 nm diode laser,” Japanese Journal of Applied Physics,
    vol. 44, no. 5, p. 3055, 2005.

    151

    [48] R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, and G. M. Ford, “Laser phase and
    frequency stabilization using an optical resonator,” Applied Physics B, vol. 31, no. 2, p. 97,
    1983.

    [49] E. D. Black, “An introduction to Pound–Drever–Hall laser frequency stabilization,”
    American Journal of Physics, vol. 69, no. 1, p. 79, 2001.

    [50] G. C. Bjorklund, “Frequency­modulation spectroscopy: a new method for measuring weak
    absorptions and dispersions,” Optics Letters, vol. 5, no. 1, p. 15, 1980.

    [51] L. J. Gillespie and L. H. D. Fraser, “The normal vapor pressure of crystalline iodine,”
    Journal of the American Chemical Society, vol. 58, no. 11, p. 2260, 1936.

    [52] I. Blanco, G. Cicala, G. Recca, and C. Tosto, “Specific heat capacity and thermal conduc­
    tivity measurements of pla­based 3d­printed parts with milled carbon fiber reinforcement,”
    Entropy, vol. 24, p. 654, 2022.

    [53] S. Fredin­Picard, “A study of contamination in 127I2 cells using laser­induced fluores­
    cence,” Metrologia, vol. 26, no. 4, p. 233, 1989.

    [54] M. Zucco, L. Robertsson, and J. P. Wallerand, “Laser­induced fluorescence as a tool to ver­
    ify the reproducibility of iodine­based laser standards: a study of 96 iodine cells,” Metrolo­
    gia, vol. 50, no. 4, p. 402, 2013.

    [55] J. Hrabina, M. Zucco, C. Philippe, T. M. Pham, and M. Holá, “Iodine absorption cells
    purity testing,” Sensors, vol. 17, no. 1, p. 102, 2017.

    [56] D. Romanini, I. Ventrillard, G. Méjean, J. Morville, and E. Kerstel, “Introduction to cav­
    ity enhanced absorption spectroscopy,” in Cavity­Enhanced Spectroscopy and Sensing.
    Springer, 2014, p. 1.

    [57] J. Zhou, W. Zhao, Y. Zhang, B. Fang, and F. Cheng, “Amplitude­modulated cavity­
    enhanced absorption spectroscopy with phase­sensitive detection: a new approach applied
    to the fast and sensitive detection of NO2,” Analytical Chemistry, vol. 94, no. 2, p. 874,
    2022.

    152

    [58] R. F. Offer, J. W. C. Conway, E. Riis, and S. Franke­Arnold, “Cavity­enhanced frequency
    up­conversion in rubidium vapor,” Optics Letters, vol. 41, no. 10, p. 2177, 2016.

    [59] K. Durak, C. H. Nguyen, V. Leong, and S. Straupe, “Diffraction­limited fabry–perot cav­
    ity in the near concentric regime,” New Journal of Physics, vol. 16, no. 10, p. 103002,
    2014.

    [60] H. Telfah, A. C. Paul, and J. Liu, “Aligning an optical cavity: with reference to cavity
    ring­down spectroscopy,” Applied Optics, vol. 59, no. 30, p. 9464, 2020.

    [61] M. Lisi, “A Review of Temperature Compensation Techniques for Microwave Resonators
    and Filters,” in A Review of Temperature Compensation Techniques for Microwave Res­
    onators and Filters, 11 2014.

    [62] K. M. Baird, “Compensation for linear thermal expansion,” Metrologia, vol. 4, no. 3, p.
    102, 1968.

    [63] J. Zhang, Y. Luo, B. Ouyang, K. Deng, and Z. Lu, “Design of an optical reference cavity
    with low thermal noise limit and flexible thermal expansion properties,” The European
    Physical Journal D, vol. 67, p. 208, 2013.

    [64] T. Legero, T. Kessler, and U. Sterr, “Tuning the thermal expansion properties of optical
    reference cavities with fused silica mirrors,” Journal of the Optical Society of America B,
    vol. 27, no. 5, p. 914, 2010.

    [65] O. Svelto, Principles of Lasers, 5th ed. Springer New York, NY, 2010, see pp. 131–179.

    [66] N. Ismail, C. C. Kores, D. Geskus, and M. Pollnau, “Fabry­Pérot resonator: spectral line
    shapes, generic and related Airy distributions, linewidths, finesses, and performance at low
    or frequency­dependent reflectivity,” Optics Express, vol. 24, no. 15, p. 16366, 2016.

    [67] F. Biraben, M. Bassini, and B. Cagnac, “Line­shapes in doppler­free two­photon spec­
    troscopy. the effect of finite transit time,” Journal de Physique, vol. 40, no. 5, p. 445,
    1979.

    153

    [68] D. Coyne, “LIGO Vacuum Compatible Materials List,” LIGO Laboratory / LIGO Scien­
    tific Collaboration, California, Working Note QCL­2023­05, 2004.

    [69] P. Fulda, D. Voss, C. Mueller, L. F. Ortega, G. Ciani, G. Mueller, and D. B. Tanner, “Align­
    ment sensing for optical cavities using radio­frequency jitter modulation,” Applied Optics,
    vol. 56, no. 13, p. 3879, May 2017.

    [70] A. Grinin, A. Matveev, D. C. Yost, L. Maisenbacher, V. Wirthl, R. Pohl, T. W. Hänsch, and
    T. Udem, “Two­photon frequency comb spectroscopy of atomic hydrogen,” Science, vol.
    370, no. 6520, p. 1061, 2020.

    [71] T. W. Hänsch and B. Couillaud, “Laser frequency stabilization by polarization spec­
    troscopy of a reflecting reference cavity,” Optics Communications, vol. 35, no. 3, p. 441,
    1980.

    [72] Y. Guan, C. Bandutunga, and M. B. Gray, “Using polarization to measure absorption in
    cavity enhanced spectroscopy,” in Optics and Photonics for Sensing the Earth 2021. Op­
    tica Publishing Group, 2021.

    [73] M. Vainio, J. E. Bernard, and L. Marmet, “Cavity­enhanced optical frequency doubler
    based on transmission­mode Hänsch–Couillaud locking,” Applied Physics B, vol. 105,
    no. 3, p. 683, 2011.

    QR CODE
    :::