跳到主要內容

簡易檢索 / 詳目顯示

研究生: 吳豐宇
Feng-Yu Wu
論文名稱: In/In2O3奈米顆粒聚合體中的超導性質探討
Superconductivity in In/In2O3 nanoparticle assemblies
指導教授: 李文献
Wen-Hsien Li
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
畢業學年度: 97
語文別: 中文
論文頁數: 138
中文關鍵詞: 不可逆行為超導約瑟夫陣列類二類超導體奈米顆粒表面氧化
外文關鍵詞: Josephson array, nanoparticle, suerconductivity, type II-like superconductor, irreversible behavior, surface oxidation
相關次數: 點閱:20下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 具有表面氧化銦絕緣層的銦奈米顆粒聚集所構成的奈米顆粒聚合體中的各個銦奈米顆粒之間存在交互作用,而本論文中藉由改變銦顆粒表面的氧化層厚度來探討超導體奈米顆粒間的交互作用。
    銦奈米顆粒採用熱蒸鍍法製備,且經由不同的曝氧過程在表面滋生氧化層。本實驗所使用一組不同氧化程度的50 nm銦奈米顆粒,以及分別固定氧化物重量比例在90 %、80 %、30 %且粒徑為3.5 nm、7.5 nm、25 nm銦與氧化銦核殼結構的奈米顆粒。並由測量樣品在低溫的磁性而定義樣品的超導性。
    超導奈米聚合體有兩種不同特徵的超導性質,稱為雙分量的超導行為,藉由改變樣品的氧化程度及外加磁場的強度能夠將此兩種分量區分開來,並提出可能描述超導奈米顆粒聚合體的模型,此兩分量分別來自於獨立的超導顆粒以及經由約瑟夫森界面而連接的超導體陣列所貢獻。
    此模型能描述超導奈米顆粒聚合體中的各種行為:類似第二類超導體的行為、高臨界磁場、超導抗磁隨溫度轉變以及隨奈米顆粒排列緊密程度不同而改變的行為。


    Indium nanoparticles were fabricated by thermal evaporation method and oxidized using different processes. The mean diameter and composition of sample were determined by XRD and AFM. A series of oxidation dependent experiments reveal the influence of oxidation on superconductivity in nanoparticle assembly; critical temperature is lowered after oxidation, and superconducting diamagnetic response is also suppressed substantially.
    Based on the result of temperature dependent AC magnetic susceptibility measurement, two superconducting components are distinguished: the first SC component, the magnetic response caused from interparticle interaction, shows a smooth transition with high tolerance to magnetic field, and the second SC component more similar to bulk is the contribution of individual nanoparticles. Those two components are separately discovered in rarely oxidized sample and extremely oxidized one. The crossover is corresponding to the behavior of Josephson junction array; surface oxide suppresses supercurrent as insulating layer.
    We use type II-like superconductor model to describe the system. Type II-like superconductor, not really type II superconductor, is nanoparticle assembly connected by Josephson junction. In this model, magnetic field is allowed to penetrate three dimensional Josephson array, but the vortex current in nanoparticle assembly is still against outer field for maintaining partial system in superconducting state. According to the model, the superconductivity in nanoparticle assembly is very sensitive to the condition of the surface and the structure of cluster.

    摘要 I 英文摘要 II 致謝 III 目錄 V 圖目錄 VIII 第一章 緒論 1 1-1 研究方向 1 1-2 為何探討奈米系統 2 1-3 關於超導 7 1-4 近期相關研究 11 參考文獻 13 第二章 理論背景 15 2-1超導理論 15 2-2小金屬顆粒中的電子能階分裂 22 2-3包含漲落修正的反磁球體模型 24 2-4金屬奈米顆粒的自旋極化 27 參考文獻 28 第三章 實驗方法 29 3-1 樣品製備 29 3-2粒徑與結構分析 32 3-3磁性量測 39 參考文獻 40 第四章 隨氧化程度變化的超導性 41 4-1 核殼結構模型 41 4-2 樣品氧化過程 43 4-3 隨氧化程度減弱的超導性質 46 4-4 雙分量超導行為 51 4-5 顆粒間交互作用 56 參考文獻 58 第五章 奈米微粒之超導性隨磁場改變 59 5-1重度氧化奈米顆粒之超導行為 59 5-2中度氧化奈米顆粒之超導行為 64 5-3低外加磁場的超導行為 68 5-4隨磁場改變的超導行為 74 5-5類二類超導行為 77 參考文獻 88 第六章 奇異雙超導分量行為 89 6-1雙相變溫度 89 6-2第二超導分量 93 6-3第一超導分量 97 6-4在升降場中不可逆之超導行為 102 6-5在升降磁場過程中不可逆且與歷史相關的超導行為 105 參考文獻 111 第七章 結論 112

    Chapt 1
    [1] W.-H. Li, C.C. Yang, F.C. Tsao and K.C. Lee, Phys. Rev. B, 68, 184507 (2003)
    [2] Yating Wangm S. Teitel and Chritistoph Dellago, J.Chem. Phys. 122, 214722 (2005)
    [3] Charles P. Poole, Jr, Frank J. Owens, Introduction to nanotechnology, 14, Wiley & sons Inc. (2003)
    [4] Neil W. Ashcroft, N.David Mermin, Solid state Physics, 133, Thomson Learning, Inc (1976)
    [5] J. A. De Toro, J.P. Gonzalez, P. Muniz and J.M. Riveiro, Nanotechnology, 20, 085701 (2009)
    [6] W.-H. Li, C. C. Yamg, F. C. Tsao, S. Y. Wu, P.J. Huang, M. K. Chung and Y. D. Tao, Phys. Rev. B, 72, 214516 (2005)
    [7] Jianqing Xu, Dimitry Bedrov and Grant D. Smith, Phys. Rev. E, 79, 011704 (2009)
    [8] Abraham Marmur, Langmur 20m 3517 (2004)
    [9] K. Autum, Y.A. Liang, S. T. Hsieh, W. Zesh, W. P. Chan, T.W. Kenny, R. Fearing and R.J. Full, Nature, 405, 681 (2000)
    [10] C.W. Wu and X. Q. Kong, Phys. Rev. E, 76, 017301 (2007)
    [11] W. Meissner and R. Ochsenfeld, Naturwissenschaften, 21, 787 (1933)
    [12] F. and H.London, Proc. Roy. Soc., A149, 71 (1935)
    [13] J. Bardeen, L. N. Cooper and Schrieffer, Phys. Rev. 108, 1175 (1957)
    [14] V.L. Ginzburg and L.D. Landau, Zh. Eksperim. i Teor. Fiz. 20, 1064 (1950)
    [15] B. D. Josephson, Phys. Lett. 1, 251 (1962)
    [16] W.P. Halperin, Review of Modern Physics, 58, 533 (1986)
    [17] J. von Delf, A.D. Zaikin, D.S. Golubev and W. Tichy, Phys. Rev. Lett, 77, 3189 (1996)
    [18] C.T. Black, D.C. Ralph, and M. Tinkham, Phys. Rev. Lett. 76, 688 (1996).
    [19] D.C. Ralph, S. Gueron, C.T. Black, M. Tinlham, Physica B, 280, 420 (2000)
    [20] Oded Agam and Igor L. Aleiner, Phys. Rev. B, 56, R5759 (1997).
    [21] Oed Agam, Ned S, Wingreen, Broris L. Altshuler, D.C. Ralph and M. Tinkham, Phys. Rev. Lett. 78, 1956 (1997).
    [22] J.R. Philips, H.S.J. van der Zant, J. White and T.P. Orlando, Phys. Rev. B, 47, 5219 (1993)
    [23] A. Tuohimaa, J. Passi and T. Tarhasaari, Phys. Rev. B, 61, 9711 (2000)
    [24] R. De Luca, T. Di Matteo, A. Tuohimaa, J. Passi, Phys. Rev. B, 57, 1173 (1998)
    [25] L. Burlachkov, Phys. Rev. B, 47, 8056 (1993)
    [26] M. Pissas, E. Morairakis, D. Stamopoulos, G. Papavassiliou, V. Psycharis and S. Koutandos, Journal of superconductivity: Incorporating Novel Magnetism, 14, 615 (2001)
    Chapt 2
    [1] J. Bardeen, L. M. Cooper and J. R. Schrieffer, Phys. Rev., 108, 1175 (1957)
    [2] Charles Kittel, Introduction to Solid State Physics, 8th edition, 273, John Willey &Sons, Inc, 2006
    [3] M. Tinkham, Introduction to superconductivity, 2nd edition, 18-19, Dover publications, Inc (1996)
    [4] Neil W. Ashcroft, N.David Mermin, Solid state Physics, 739-740, Thomson Learning, Inc (1976)
    [5] Hideki Matsumoto, Introduction to Superconductivity, 15, Institute of Physics, Univ. of Tsukuba
    [6] M. Tinkham, Introduction to superconductivity, 2nd edition, 7, Dover publications, Inc (1996)
    [7] M. Tinkham, Introduction to superconductivity, 2nd edition, 120-122, Dover publications, Inc (1996)
    [8] W. P. Halperin, Review of Morden Physics, 58, 533 (1986)
    [9] Zangwill, Andrew., Physics at surfaces, (1988)
    [10] Y. Yamamoto, T. Miura, M. Suzuki, N. Kawamura, H. Miyagawa, T. Nakamura, K. Kobayashi, T. Teranishi , and H. Hori1, Phys. Rev. Lett., 93, (2005)
    [11] Manoj K. Harbola amd Viraht Sahni, Rev. B, 37, 745 (1988)
    Chapt 3
    [1] Charles Kittel, Introduction to Solid State Physics, 8th edition, p25~45, John Willey &Sons, Inc, 2006
    [2] 吳泰伯、許樹恩、X光繞射原理與材料結構分析,第三版,中國材料科學學會,2004
    Chapt 4
    [1] Jung Hyeun Kim and Sheryl H. Ehrman Applied Physics Letters, 84 (8), 1278–1280 (2004)
    [2] W. Vogel, S. Botti, S. Martelli, E. CarlinoNew, J. Chem, 1998, 749-752 (1998)
    [3] D. L. Peng, T. Hihara, K. Sumiyama and H. Morilawa, J. Appl. Phys, 92, 3075-3083 (2002)
    [4] W.-H. Li, C. C. Yamg, F. C. Tsao, S. Y. Wu, P.J. Huang, M. K. Chung and Y. D. Tao, Phys. Rev. B, 72, 214516 (2005)
    [5] Charles Kittel, Introduction to Solid State Physics, 8th edition, 315-317, John Willey &Sons, Inc, 2006
    [6] T. Shinohara, T. Sato and T. Taniyama, Phys. Rev. Lett. , 91, 197201 (2005)
    [7] Y. Yamamoto, T. Miura, M. Suzuki, N. Kawamura, H. Miyagawa, T. Nakamura, K. Kobayashi, T. Teranishi, and H. Hori, Phys. Rev. Lett. 93, 116801 (2004).
    [8] M. Tinkham, Introduction to superconductivity, 2nd edition, 18-19, Dover publications, Inc (1996)
    [9] M. Octavio, W. J. Skocpo, M. Tinkham, Phys. Rev. B, 17, 159 (1978)
    [10] A. Tuohimaa,* J. Paasi, and T. Tarhasaari, Phys. Rev. B, 61, 9711 (1978)
    [11] P. Barbara, F. M. Araujo-Moreira, A. B. Cawthrone, and C. J. Lobb, Phys. Rev. B, 60, 7489 (1999)
    Chapt 5
    [1] M. Tinkham, Introduction to superconductivity, 2nd edition, 296-298, Dover publications, Inc (1996)
    [2] R. A. Buhrman and W. P. Halperin, Phys. Rev. Lett. 30, 692 (1973).
    [3] P. Barbara, F. M. Araujo-Moreira, A. B. Cawthrone, and C. J. Lobb, Rev. B, 60, 7489 (1999)
    [4] W.-H. Li, C. C. Yang, F. C. Tsao, and K. C. Lee, Phys. Rev. B, 68, 184507 (2003)
    [5] M. Tinkham, Introduction to superconductivity, 2nd edition, 140-195, Dover publications, Inc (1996)
    [6] Charles Kittel, Introduction to Solid State Physics, 8th edition, 315-317, John Willey &Sons, Inc, (2006)
    [7] C. S. Owen and D. J. Scalapino, Phys. Rev. , 164, 538 (1967)
    [8] A. M. Goldman amd P. J. Kreisman, Phys. Rev. , 164, 544 (1967)
    [9] A. P. Nielsen, A. B. Cawthorne, P. Barbara, F. C. Wellstood, and C. J. Lobb, R. S. Newrock, M. G. Forrester, Phys. Rev. B, 62, 14380 (2000)
    [10] M. Tinkham, Introduction to superconductivity, 2nd edition, 196-202, Dover publications, Inc (1996)
    [11] M. Octavio, W. J. Skocpo, M. Tinkham, Phys. Rev. B, 17, 159 (1978)
    [12] F.-Y. Wu, C.C. Yang, C.-M. Wu, C.-W. Wang and W.-H. Li, Journal of Applied Physics, 101, 1 (2007)
    Chapt 6
    [1] M. Pissas, E. Moraitakis, D. Stamopoulos, G. Papavassiliou,V. Psycharis, and S. Koutandos, Journal of Superconductivity: Incorporating Novel Magnetism, 14, 615 (2001)
    [2] L. Burlachkov, Phys. Rev. B, 47, 8056 (1993)

    QR CODE
    :::