| 研究生: |
黃逸皓 Yi-Hao Huang |
|---|---|
| 論文名稱: |
開發綠色途徑之機械化學法快速合成鋯金屬有機骨架材料UiO-66衍生物 Green and rapid synthesis of zirconium metal– organic frameworks via mechanochemistry: UiO-66 analog nanocrystals obtained in one hundred seconds |
| 指導教授: |
謝發坤
Fa-Kuen Shieh |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學學系 Department of Chemistry |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 70 |
| 中文關鍵詞: | 金屬有機骨架材料 、機械力化學法 、快速合成 |
| 外文關鍵詞: | Rapid synthesis |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
金屬有機骨架材料(Metal-organic frameworks;MOFs)是近年來迅速崛起的一種孔洞材料(porous material)之一,其藉由金屬離子(metal ion)或金屬團簇(metal cluster)與有機配位體(organic linker)所構成,不同的組成單元及官能基具有不同的物理或化學性質,同時具有多孔性與高比表面積,因此其應用性非常廣泛。其中一種具有新穎性與突破性的應用為本實驗室所發表,將ZIFs(為MOFs的一個分支)與蛋白質酵素結合(CAT@ZIF-90),進行過氧化氫的催化反應,同時可以防止蛋白質水解酶的作用達到保護酵素的效果。並可藉由MOFs的結構提供一個研究生物分子行為的特殊的環境-如侷限性環境;因此這種酵素與骨架材料的結合的複合材料在生物催化上相當具有潛力,若能更進一步的拓展此領域,就可以探討更多的酵素行為。然而許多酵素的底物(substrates)都比過氧化氫大,無法進入ZIF-90孔洞被酵素催化;而且ZIF-90在酸性條件的結構穩定性不佳,無法應用到酸性環境中作用的生物分子。為此,我們選用相對穩定且孔徑較大的UiO-66,係因材料本身穩定性而有許多應用性,在近年來的研究更是如火如荼的展開,藉此期望能研究更多環境中的生物分子行為。然而,UiO-66一般都是在有機溶液下合成,縱使近年來已經有開發出利於蛋白酵素較溫和的水相合成條件,但還需加入會傷害酵素的乙酸當作添加劑,所以在水相尚待突破的同時,另一種只需少量溶劑的合成方法勢在必行。因此本研究主題為:利用機械力化學合成法的水輔助研磨反應得到金屬有機骨架材料UiO-66-F4,並以有機配位體與微量溶劑在球磨合成法中的溶解度效應切入,可於三分鐘的快速球磨反應後得到產物,並具有良好的水、熱穩定性及疏水性,且在實驗也發現反應六十分鐘後的產物具有較佳的孔洞性質。此種溫和且不需添加酸性有機溶劑的球磨合成環境,提供一個可應用於MOFs包覆酵素或奈米粒子的系統,兩種領域皆具有相當廣闊的前景。
Metal-organic frameworks (MOFs) are a class of porous crystalline materials composed of two main components: (i) clusters (or better multinuclear complexes) and (i) linker systems. In the past decade, they have been extensively studied because of their extraordinary porosity that makes them suitable for many applications. In particular, due to the variety of the choosing metallic clusters and organic linkers with different functional groups, MOFs have significantly physical and chemical properties. In these characters, a pretty interesting study reported by our lab about the combination of enzyme (Catalase) and MOF (ZIF-90) under a de novo approach. The ZIF-90 support provides an interesting size-sheltering function to catalase and protects catalase from the protein killer-proteinase-K. That study offers a novel tool to immobilize and impart new functions to biomolecules. In order to expand the routes for other enzymatic reactions, we choose UiO-66 (nominal composition: Zr6O4(OH)4(BDC)6; BDC = 1,4-benzene dicarboxylate) as our main material because UiO-66 with bigger aperture size at 6 Å comparing it in ZIF-90 at 3.5 Å. This property allows the bigger substrate to deliver into MOF structure for contacting embedded enzymes. Under harsh condition of the conventional way for the UiO-66 synthesis, normally, the catalytic activity of the biological component significantly is able to be deteriorated because of the chemically/thermally induced denaturation of protein. Therefore, a way of the milder condition to synthesize UiO-66 needs to be developed. In this regard, we provided a new approach, i.e., mechanochemistry, to synthesize MOF material in this study: a UiO-66 analog was synthesized in 180 s using water-assisted grinding. The linker solubility suggested that tetrafluorobenzene- 1,4-dicarboxylic acid was the best linker due to the lowest average pKa value. Zr-based Metal–organic framework nanocrystals displayed good topologies and hydrophobicities, and high water/thermal stabilities. The less amorphous complex led to higher porosities and pore volumes with a 60 min grinding time. Importantly, this mild approach for obtaining MOFs without hazardous solvents provides an additional avenue for converting biomolecules or metal nanoparticles into MOFs as composites for applications.
1. Zhou, H.-C.; Long, J. R.; Yaghi, O. M., Introduction to Metal–Organic Frameworks. Chemical Reviews 2012, 112 (2), 673-674.
2. Batten Stuart, R.; Champness Neil, R.; Chen, X.-M.; Garcia-Martinez, J.; Kitagawa, S.; Öhrström, L.; O’Keeffe, M.; Paik Suh, M.; Reedijk, J., Terminology of metal–organic frameworks and coordination polymers (IUPAC Recommendations 2013). Pure and Applied Chemistry 2013, 85 (8), 1715-1724.
3. Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M., The Chemistry and Applications of Metal-Organic Frameworks. Science 2013, 341 (6149), 1230444.
4. Matsuda, R.; Kitaura, R.; Kitagawa, S.; Kubota, Y.; Belosludov, R. V.; Kobayashi, T. C.; Sakamoto, H.; Chiba, T.; Takata, M.; Kawazoe, Y.; Mita, Y., Highly controlled acetylene accommodation in a metal-organic microporous material. Nature 2005, 436 (7048), 238-241.
5. Li, J.-R.; Sculley, J.; Zhou, H.-C., Metal–Organic Frameworks for Separations. Chemical Reviews 2012, 112 (2), 869-932.
6. Chughtai, A. H.; Ahmad, N.; Younus, H. A.; Laypkov, A.; Verpoort, F., Metal-organic frameworks: versatile heterogeneous catalysts for efficient catalytic organic transformations. Chemical Society Reviews 2015, 44 (19), 6804-6849.
7. Horcajada, P.; Chalati, T.; Serre, C.; Gillet, B.; Sebrie, C.; Baati, T.; Eubank, J. F.; Heurtaux, D.; Clayette, P.; Kreuz, C.; Chang, J.-S.; Hwang, Y. K.; Marsaud, V.; Bories, P.-N.; Cynober, L.; Gil, S.; Ferey, G.; Couvreur, P.; Gref, R., Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nature Materials 2010, 9 (2), 172-178.
8. Yen, C.-I.; Liu, S.-M.; Lo, W.-S.; Wu, J.-W.; Liu, Y.-H.; Chein, R.-J.; Yang, R.; Wu, K. C. W.; Hwu, J. R.; Ma, N.; Shieh, F.-K., Cytotoxicity of Postmodified Zeolitic Imidazolate Framework-90 (ZIF-90) Nanocrystals: Correlation between Functionality and Toxicity. Chemistry - A European Journal 2016, 22 (9), 2925-2929.
9. Langmi, H. W.; Ren, J.; Musyoka, N. M., Metal-Organic Frameworks as Materials for Fuel Cell Technologies. In Nanomaterials for Fuel Cell Catalysis, Ozoemena, K. I.; Chen, S., Eds. Springer International Publishing: Cham, 2016; pp 367-407.
10. Bétard, A.; Fischer, R. A., Metal–Organic Framework Thin Films: From Fundamentals to Applications. Chemical Reviews 2012, 112 (2), 1055-1083.
11. Kreno, L. E.; Leong, K.; Farha, O. K.; Allendorf, M.; Van Duyne, R. P.; Hupp, J. T., Metal–Organic Framework Materials as Chemical Sensors. Chemical Reviews 2012, 112 (2), 1105-1125.
12. Sheberla, D.; Bachman, J. C.; Elias, J. S.; Sun, C.-J.; Shao-Horn, Y.; Dinca, M., Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nature Materials 2017, 16 (2), 220-224.
13. Everett, D. H., Manual of Symbols and Terminology for Physicochemical Quantities and Units, Appendix II: Definitions, Terminology and Symbols in Colloid and Surface Chemistry. Pure and Applied Chemistry 1972, 31 (4), 577.
14. Li, H.; Eddaoudi, M.; O'Keeffe, M.; Yaghi, O. M., Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 1999, 402 (6759), 276-279.
15. Stock, N.; Biswas, S., Synthesis of Metal-Organic Frameworks (MOFs): Routes to Various MOF Topologies, Morphologies, and Composites. Chemical Reviews 2012, 112 (2), 933-969.
16. Tranchemontagne, D. J.; Hunt, J. R.; Yaghi, O. M., Room temperature synthesis of metal-organic frameworks: MOF-5, MOF-74, MOF-177, MOF-199, and IRMOF-0. Tetrahedron 2008, 64 (36), 8553-8557.
17. Rabenau, A., The Role of Hydrothermal Synthesis in Preparative Chemistry. Angewandte Chemie International Edition in English 1985, 24 (12), 1026-1040.
18. Ameloot, R.; Stappers, L.; Fransaer, J.; Alaerts, L.; Sels, B. F.; De Vos, D. E., Patterned Growth of Metal-Organic Framework Coatings by Electrochemical Synthesis. Chemistry of Materials 2009, 21 (13), 2580-2582.
19. Klinowski, J.; Almeida Paz, F. A.; Silva, P.; Rocha, J., Microwave-Assisted Synthesis of Metal-Organic Frameworks. Dalton Transactions 2011, 40 (2), 321-330.
20. Pichon, A.; Lazuen-Garay, A.; James, S. L., Solvent-free synthesis of a microporous metal-organic framework. CrystEngComm 2006, 8 (3), 211-214.
21. Qiu, L.-G.; Li, Z.-Q.; Wu, Y.; Wang, W.; Xu, T.; Jiang, X., Facile synthesis of nanocrystals of a microporous metal-organic framework by an ultrasonic method and selective sensing of organoamines. Chemical Communications 2008, (31), 3642-3644.
22. James, S. L.; Adams, C. J.; Bolm, C.; Braga, D.; Collier, P.; Friscic, T.; Grepioni, F.; Harris, K. D. M.; Hyett, G.; Jones, W.; Krebs, A.; Mack, J.; Maini, L.; Orpen, A. G.; Parkin, I. P.; Shearouse, W. C.; Steed, J. W.; Waddell, D. C., Mechanochemistry: opportunities for new and cleaner synthesis. Chemical Society Reviews 2012, 41 (1), 413-447.
23. Bai, Y.; Dou, Y.; Xie, L.-H.; Rutledge, W.; Li, J.-R.; Zhou, H.-C., Zr-based metal-organic frameworks: design, synthesis, structure, and applications. Chemical Society Reviews 2016, 45 (8), 2327-2367.
24. Cavka, J. H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.; Bordiga, S.; Lillerud, K. P., A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stability. Journal of the American Chemical Society 2008, 130 (42), 13850-13851.
25. Zhao, D.; Timmons, D. J.; Yuan, D.; Zhou, H.-C., Tuning the Topology and Functionality of Metal−Organic Frameworks by Ligand Design. Accounts of Chemical Research 2011, 44 (2), 123-133.
26. Feng, D.; Gu, Z.-Y.; Chen, Y.-P.; Park, J.; Wei, Z.; Sun, Y.; Bosch, M.; Yuan, S.; Zhou, H.-C., A Highly Stable Porphyrinic Zirconium Metal–Organic Framework with shp-a Topology. Journal of the American Chemical Society 2014, 136 (51), 17714-17717.
27. Feng, D.; Gu, Z.-Y.; Li, J.-R.; Jiang, H.-L.; Wei, Z.; Zhou, H.-C., Zirconium-Metalloporphyrin PCN-222: Mesoporous Metal–Organic Frameworks with Ultrahigh Stability as Biomimetic Catalysts. Angewandte Chemie International Edition 2012, 51 (41), 10307-10310.
28. Jiang, H.-L.; Feng, D.; Wang, K.; Gu, Z.-Y.; Wei, Z.; Chen, Y.-P.; Zhou, H.-C., An Exceptionally Stable, Porphyrinic Zr Metal–Organic Framework Exhibiting pH-Dependent Fluorescence. Journal of the American Chemical Society 2013, 135 (37), 13934-13938.
29. Feng, D.; Chung, W.-C.; Wei, Z.; Gu, Z.-Y.; Jiang, H.-L.; Chen, Y.-P.; Darensbourg, D. J.; Zhou, H.-C., Construction of Ultrastable Porphyrin Zr Metal–Organic Frameworks through Linker Elimination. Journal of the American Chemical Society 2013, 135 (45), 17105-17110.
30. Feng, D.; Wang, K.; Su, J.; Liu, T. F.; Park, J.; Wei, Z.; Bosch, M.; Yakovenko, A.; Zou, X.; Zhou, H. C., A Highly Stable Zeotype Mesoporous Zirconium Metal–Organic Framework with Ultralarge Pores. Angewandte Chemie International Edition 2015, 54 (1), 149-154.
31. Bon, V.; Senkovska, I.; Baburin, I. A.; Kaskel, S., Zr- and Hf-Based Metal–Organic Frameworks: Tracking Down the Polymorphism. Crystal Growth & Design 2013, 13 (3), 1231-1237.
32. Wang, T. C.; Bury, W.; Gómez-Gualdrón, D. A.; Vermeulen, N. A.; Mondloch, J. E.; Deria, P.; Zhang, K.; Moghadam, P. Z.; Sarjeant, A. A.; Snurr, R. Q.; Stoddart, J. F.; Hupp, J. T.; Farha, O. K., Ultrahigh Surface Area Zirconium MOFs and Insights into the Applicability of the BET Theory. Journal of the American Chemical Society 2015, 137 (10), 3585-3591.
33. Hu, Z.; Castano, I.; Wang, S.; Wang, Y.; Peng, Y.; Qian, Y.; Chi, C.; Wang, X.; Zhao, D., Modulator Effects on the Water-Based Synthesis of Zr/Hf Metal–Organic Frameworks: Quantitative Relationship Studies between Modulator, Synthetic Condition, and Performance. Crystal Growth & Design 2016, 16 (4), 2295-2301.
34. Hu, Z.; Peng, Y.; Kang, Z.; Qian, Y.; Zhao, D., A Modulated Hydrothermal (MHT) Approach for the Facile Synthesis of UiO-66-Type MOFs. Inorganic Chemistry 2015, 54 (10), 4862-4868.
35. Atzori, C.; Shearer, G. C.; Maschio, L.; Civalleri, B.; Bonino, F.; Lamberti, C.; Svelle, S.; Lillerud, K. P.; Bordiga, S., Effect of Benzoic Acid as a Modulator in the Structure of UiO-66: An Experimental and Computational Study. The Journal of Physical Chemistry C 2017, 121 (17), 9312-9324.
36. Katz, M. J.; Brown, Z. J.; Colon, Y. J.; Siu, P. W.; Scheidt, K. A.; Snurr, R. Q.; Hupp, J. T.; Farha, O. K., A facile synthesis of UiO-66, UiO-67 and their derivatives. Chemical Communications 2013, 49 (82), 9449-9451.
37. Howarth, A. J.; Liu, Y.; Li, P.; Li, Z.; Wang, T. C.; Hupp, J. T.; Farha, O. K., Chemical, thermal and mechanical stabilities of metal–organic frameworks. Nature Reviews Materials 2016, 1, 15018.
38. Shearer, G. C.; Chavan, S.; Ethiraj, J.; Vitillo, J. G.; Svelle, S.; Olsbye, U.; Lamberti, C.; Bordiga, S.; Lillerud, K. P., Tuned to Perfection: Ironing Out the Defects in Metal–Organic Framework UiO-66. Chemistry of Materials 2014, 26 (14), 4068-4071.
39. Shearer, G. C.; Chavan, S.; Bordiga, S.; Svelle, S.; Olsbye, U.; Lillerud, K. P., Defect Engineering: Tuning the Porosity and Composition of the Metal–Organic Framework UiO-66 via Modulated Synthesis. Chemistry of Materials 2016, 28 (11), 3749-3761.
40. Vermoortele, F.; Bueken, B.; Le Bars, G.; Van de Voorde, B.; Vandichel, M.; Houthoofd, K.; Vimont, A.; Daturi, M.; Waroquier, M.; Van Speybroeck, V.; Kirschhock, C.; De Vos, D. E., Synthesis Modulation as a Tool To Increase the Catalytic Activity of Metal–Organic Frameworks: The Unique Case of UiO-66(Zr). Journal of the American Chemical Society 2013, 135 (31), 11465-11468.
41. Choi, K. M.; Na, K.; Somorjai, G. A.; Yaghi, O. M., Chemical Environment Control and Enhanced Catalytic Performance of Platinum Nanoparticles Embedded in Nanocrystalline Metal–Organic Frameworks. Journal of the American Chemical Society 2015, 137 (24), 7810-7816.
42. Zhu, X.; Gu, J.; Wang, Y.; Li, B.; Li, Y.; Zhao, W.; Shi, J., Inherent anchorages in UiO-66 nanoparticles for efficient capture of alendronate and its mediated release. Chemical Communications 2014, 50 (63), 8779-8782.
43. Li, L.; Tang, S.; Wang, C.; Lv, X.; Jiang, M.; Wu, H.; Zhao, X., High gas storage capacities and stepwise adsorption in a UiO type metal-organic framework incorporating Lewis basic bipyridyl sites. Chemical Communications 2014, 50 (18), 2304-2307.
44. Ameloot, R.; Aubrey, M.; Wiers, B. M.; Gómora‐Figueroa, A. P.; Patel, S. N.; Balsara, N. P.; Long, J. R., Ionic Conductivity in the Metal–Organic Framework UiO‐66 by Dehydration and Insertion of Lithium tert‐Butoxide. Chemistry - A European Journal 2013, 19 (18), 5533-5536.
45. Yang, J.; Dai, Y.; Zhu, X.; Wang, Z.; Li, Y.; Zhuang, Q.; Shi, J.; Gu, J., Metal-organic frameworks with inherent recognition sites for selective phosphate sensing through their coordination-induced fluorescence enhancement effect. Journal of Materials Chemistry A 2015, 3 (14), 7445-7452.
46. Yaghi, O. M., Reticular Chemistry—Construction, Properties, and Precision Reactions of Frameworks. Journal of the American Chemical Society 2016, 138 (48), 15507-15509.
47. Schaate, A.; Roy, P.; Godt, A.; Lippke, J.; Waltz, F.; Wiebcke, M.; Behrens, P., Modulated Synthesis of Zr‐Based Metal–Organic Frameworks: From Nano to Single Crystals. Chemistry - A European Journal 2011, 17 (24), 6643-6651.
48. Shieh, F. K.; Wang, S. C.; Leo, S. Y.; Wu, K. C. W., Water‐Based Synthesis of Zeolitic Imidazolate Framework‐90 (ZIF‐90) with a Controllable Particle Size. Chemistry - A European Journal 2013, 19 (34), 11139-11142.
49. Shieh, F.-K.; Wang, S.-C.; Yen, C.-I.; Wu, C.-C.; Dutta, S.; Chou, L.-Y.; Morabito, J. V.; Hu, P.; Hsu, M.-H.; Wu, K. C. W.; Tsung, C.-K., Imparting Functionality to Biocatalysts via Embedding Enzymes into Nanoporous Materials by a de Novo Approach: Size-Selective Sheltering of Catalase in Metal–Organic Framework Microcrystals. Journal of the American Chemical Society 2015, 137 (13), 4276-4279.
50. Liao, F.-S.; Lo, W.-S.; Hsu, Y.-S.; Wu, C.-C.; Wang, S.-C.; Shieh, F.-K.; Morabito, J. V.; Chou, L.-Y.; Wu, K. C. W.; Tsung, C.-K., Shielding against Unfolding by Embedding Enzymes in Metal–Organic Frameworks via a de Novo Approach. Journal of the American Chemical Society 2017, 139 (19), 6530-6533.
51. Friščić, T., Metal-Organic Frameworks: Mechanochemical Synthesis Strategies. In Encyclopedia of Inorganic and Bioinorganic Chemistry, John Wiley & Sons, Ltd: 2011.
52. Friscic, T.; Childs, S. L.; Rizvi, S. A. A.; Jones, W., The role of solvent in mechanochemical and sonochemical cocrystal formation: a solubility-based approach for predicting cocrystallisation outcome. CrystEngComm 2009, 11 (3), 418-426.
53. Julien, P. A.; Užarević, K.; Katsenis, A. D.; Kimber, S. A. J.; Wang, T.; Farha, O. K.; Zhang, Y.; Casaban, J.; Germann, L. S.; Etter, M.; Dinnebier, R. E.; James, S. L.; Halasz, I.; Friščić, T., In Situ Monitoring and Mechanism of the Mechanochemical Formation of a Microporous MOF-74 Framework. Journal of the American Chemical Society 2016, 138 (9), 2929-2932.
54. Strobridge, F. C.; Judas, N.; Friscic, T., A stepwise mechanism and the role of water in the liquid-assisted grinding synthesis of metal-organic materials. CrystEngComm 2010, 12 (8), 2409-2418.
55. Do, J.-L.; Friščić, T., Mechanochemistry: A Force of Synthesis. ACS Central Science 2017, 3 (1), 13-19.
56. Mottillo, C.; Friščić, T., Advances in Solid-State Transformations of Coordination Bonds: From the Ball Mill to the Aging Chamber. Molecules 2017, 22 (1), 144.
57. Beldon, P. J.; Fábián, L.; Stein, R. S.; Thirumurugan, A.; Cheetham, A. K.; Friščić, T., Rapid Room‐Temperature Synthesis of Zeolitic Imidazolate Frameworks by Using Mechanochemistry. Angewandte Chemie International Edition 2010, 49 (50), 9640-9643.
58. Crawford, D.; Casaban, J.; Haydon, R.; Giri, N.; McNally, T.; James, S. L., Synthesis by extrusion: continuous, large-scale preparation of MOFs using little or no solvent. Chemical Science 2015, 6 (3), 1645-1649.
59. Katsenis, A. D.; Puškarić, A.; Štrukil, V.; Mottillo, C.; Julien, P. A.; Užarević, K.; Pham, M.-H.; Do, T.-O.; Kimber, S. A. J.; Lazić, P.; Magdysyuk, O.; Dinnebier, R. E.; Halasz, I.; Friščić, T., In situ X-ray diffraction monitoring of a mechanochemical reaction reveals a unique topology metal-organic framework. 2015, 6, 6662.
60. Dahl, J. A.; Maddux, B. L. S.; Hutchison, J. E., Toward Greener Nanosynthesis. Chemical Reviews 2007, 107 (6), 2228-2269.
61. Merrifield, R. B., Solid Phase Peptide Synthesis. I. The Synthesis of a Tetrapeptide. Journal of the American Chemical Society 1963, 85 (14), 2149-2154.
62. Sing, K. S. W., Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure and Applied Chemistry 1985, 57 (4), 603.
63. Choi, K. M.; Jeong, H. M.; Park, J. H.; Zhang, Y.-B.; Kang, J. K.; Yaghi, O. M., Supercapacitors of Nanocrystalline Metal–Organic Frameworks. ACS Nano 2014, 8 (7), 7451-7457.
64. Shan, N.; Toda, F.; Jones, W., Mechanochemistry and co-crystal formation: effect of solvent on reaction kinetics. Chemical Communications 2002, (20), 2372-2373.
65. Uzarevic, K.; Wang, T. C.; Moon, S.-Y.; Fidelli, A. M.; Hupp, J. T.; Farha, O. K.; Friscic, T., Mechanochemical and solvent-free assembly of zirconium-based metal-organic frameworks. Chemical Communications 2016, 52 (10), 2133-2136.
66. Hasa, D.; Schneider Rauber, G.; Voinovich, D.; Jones, W., Cocrystal Formation through Mechanochemistry: from Neat and Liquid-Assisted Grinding to Polymer-Assisted Grinding. Angewandte Chemie International Edition 2015, 54 (25), 7371-7375.
67. Longstaffe, J. G.; Simpson, A. J., Understanding solution‐state noncovalent interactions between xenobiotics and natural organic matter using 19F/1H heteronuclear saturation transfer difference nuclear magnetic resonance spectroscopy. Environmental Toxicology and Chemistry 2011, 30 (8), 1745-1753.
68. Lu, P.; Wu, Y.; Kang, H.; Wei, H.; Liu, H.; Fang, M., What can pKa and NBO charges of the ligands tell us about the water and thermal stability of metal organic frameworks? Journal of Materials Chemistry A 2014, 2 (38), 16250-16267.
69. Chin, J. M.; Chen, E. Y.; Menon, A. G.; Tan, H. Y.; Hor, A. T. S.; Schreyer, M. K.; Xu, J., Tuning the aspect ratio of NH2-MIL-53(Al) microneedles and nanorods via coordination modulation. CrystEngComm 2013, 15 (4), 654-657.
70. Cravillon, J.; Nayuk, R.; Springer, S.; Feldhoff, A.; Huber, K.; Wiebcke, M., Controlling Zeolitic Imidazolate Framework Nano- and Microcrystal Formation: Insight into Crystal Growth by Time-Resolved In Situ Static Light Scattering. Chemistry of Materials 2011, 23 (8), 2130-2141.
71. Wu, H.; Chua, Y. S.; Krungleviciute, V.; Tyagi, M.; Chen, P.; Yildirim, T.; Zhou, W., Unusual and Highly Tunable Missing-Linker Defects in Zirconium Metal–Organic Framework UiO-66 and Their Important Effects on Gas Adsorption. Journal of the American Chemical Society 2013, 135 (28), 10525-10532.
72. Hou, L.; Wang, L.; Zhang, N.; Xie, Z.; Dong, D., Polymer brushes on metal-organic frameworks by UV-induced photopolymerization. Polymer Chemistry 2016, 7 (37), 5828-5834.
73. Dalvi, V. H.; Rossky, P. J., Molecular origins of fluorocarbon hydrophobicity. Proceedings of the National Academy of Sciences 2010, 107 (31), 13603-13607.
74. Vermoortele, F.; Vandichel, M.; Van de Voorde, B.; Ameloot, R.; Waroquier, M.; Van Speybroeck, V.; De Vos, D. E., Electronic Effects of Linker Substitution on Lewis Acid Catalysis with Metal–Organic Frameworks. Angewandte Chemie International Edition 2012, 51 (20), 4887-4890.
75. Huang, Y.-H.; Lo, W.-S.; Kuo, Y.-W.; Chen, W.-J.; Lin, C.-H.; Shieh, F.-K., Green and rapid synthesis of zirconium metal-organic frameworks via mechanochemistry: UiO-66 analog nanocrystals obtained in one hundred seconds. Chemical Communications 2017, 53 (43), 5818-5821.
76. Lian, X.; Fang, Y.; Joseph, E.; Wang, Q.; Li, J.; Banerjee, S.; Lollar, C.; Wang, X.; Zhou, H.-C., Enzyme-MOF (metal-organic framework) composites. Chemical Society Reviews 2017, DOI:10.1039/C7CS00058H.
77. Hu, P.; Zhuang, J.; Chou, L.-Y.; Lee, H. K.; Ling, X. Y.; Chuang, Y.-C.; Tsung, C.-K., Surfactant-Directed Atomic to Mesoscale Alignment: Metal Nanocrystals Encased Individually in Single-Crystalline Porous Nanostructures. Journal of the American Chemical Society 2014, 136 (30), 10561-10564.