| 研究生: |
廖宏祥 Horng-Shyang Liaw |
|---|---|
| 論文名稱: |
正交多工開關鍵控調變家族研究 A Study on Orthogonally-Multiplexed On-Off-Keyed Modulation Families |
| 指導教授: |
鐘嘉德
Char-Dir Chung 魏瑞益 Ruey-Yi Wei |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 畢業學年度: | 95 |
| 語文別: | 英文 |
| 論文頁數: | 123 |
| 中文關鍵詞: | 開關鍵控 、脈衝振幅信號方式 、相移鍵控信號方式 、正交多工調變 、同調解調 |
| 外文關鍵詞: | phase-shift-keyed signaling, pulse amplitude signaling, on-off-keyed signaling, orthogonal multiplexing modulation, coherent demodulation |
| 相關次數: | 點閱:16 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出兩種新型的正交多工開關鍵控調變家族。傳統正交多工正交振幅調變(Orthogonally-Multiplexed Orthogonal Amplitude Modulation,OMOAM) 及正交多工正交相位調變(Orthogonally-Multiplexed Orthogonal Phase Modulation, OMOPM)所使用的正交群信號方式,本文以開關鍵控信號方式加以取代,並形成正交多工開關鍵控振幅調變(Orthogonally-Multiplexed On-Off-Keyed Amplitude Modulation, OMO2AM)及正交多工開關鍵控相位調變(Orthogonally-Multiplexed On-Off-Keyed Phase Modulation, OMO2PM)家族。由典型頻限性及時限性基底信號所建構的正交多工開關鍵控振幅及相位調變家族,本文以頻帶外功率分布探討其功率頻譜密度的特性; 並基於最大相似原理,推導在白高斯雜訊環境下同調解調信號之最佳化接收機性能,分別以聯合邊限及近似邊限分析比次錯誤率,並以電腦模擬驗證。由數值分析結果,正交多工開關鍵控振幅調變及正交多工開關鍵控相位調變可提供除了傳統正交多工正交振幅調變及正交多工正交相位調變之外,在功率效益及頻譜效益上更多的設計選擇。當信號基底由可實現的正交方波構成時,正交多工開關鍵控家族更可提供比一些常用的正交頻分多工信號更
好的功率效益及頻譜效益。本文也分析在IFFT 實現架構下的接收效能; 正交多工開關鍵控家族仍可應用於多路徑延遲擴散環境下。
This thesis presents two new orthogonally-multiplexed on-off-keyed modulation families. By substituting the on-off-keyed signaling for the orthogonal group signaling adopted in two recently reported modulation formats, namely the orthogonally multiplexed orthogonal amplitude modulation (OMOAM) and the orthogonally-multiplexed orthogonal phase modulation (OMOPM) , the orthogonally-multiplexed on-off-keyed amplitude modulation (OMO2AM) family and the orthogonally-multiplexed on-off-keyed phase modulation (OMO2PM) family are investigated. The power spectral density characteristics of both OMO2AM and OMO2PM signals constructed from typical band-limited and time-limited basis signal sets are studied in terms of fractional power containments. Based on the maximum-likelihood principle, the optimum schemes for coherently demodulating uncoded OMO2AM and OMO2PM signals on the additive white Gaussian noise channel are developed. Union bounds and approximate upper bounds are analyzed and verified by simulation to evaluate the bit error probability characteristics of the optimum schemes. From numerical results, the OMO2AM and OMO2PM schemes are found to provide other good choices of power and spectral efficiencies ranging among the efficiencies is achieved by the OMOAM and OMOPM families. When constructed from the practically realizable basis set with rectangularly pulsed quadrature carrier signals, improvement over certain orthogonally frequency-division-multiplexing modulation schemes in both power and spectral efficiencies is also achieved by some OMO2AM and OMO2PM schemes. The error performance of OMO2AM and OMO2PM schemes realized in FFT architecture with different modulation mapping are also studied. The on-off-keyed formats can also be applied in delay spread channel.
[1] I.S. Reed and R.A. Scholtz, “N-orthogonal phase-modulated codes,” IEEE Trans.
Inform. Theory, vol. 12, pp. 388-395, July 1966.
[2] A J. Viterbi and J.I. Stiffler, “Performance of N-orthogonal codes,” IEEE Trans.
Inform. Theory, vol. 13, pp. 521-522, July 1967.
[3] W.C. Lindsey and M.K. Simon, Telecommunication Systems Engineering. Englewood
Cliffs, N.J.: Prentice Hall, 1973.
[4] R. Padovani and J.K. Wolf, “Coded phase/frequency modulation,” IEEE Trans.
Commun., vol. 34, pp. 446-453, May 1986.
[5] S.S. Periyalwar and S.M. Fleisher, “Multiple trellis coded frequency and phase modulation,”
IEEE Trans. Commun., vol. 40, pp. 1038-1046, June 1992.
[6] D.Saha and T.G. Birdsall, “Quadrature-quadrature phase shift keying,” IEEE Trans.
Commun., vol. 37, pp. 437-448, May 1989.
[7] D.Saha, “Channel coding with quadrature-quadrature phase shift keying (Q2PSK)
signals,” IEEE Trans. Commun., vol. 38, pp. 409-417, Apr. 1990.
[8] S.S. Periyalwar and S.M. Fleisher, “Trellis coding of quadrature frequency/phase
modulated signals,” IEEE J. Select. Areas Commun., vol. 10, pp. 1254-1263, Oct.
1992.
[9] S.M. Fleisher and S. Qu, “Quadrature frequency/phase modulation,” IEEE Trans.
Commun., vol. 43, pp. 1513-1524, Feb./Mar./Apr. 1995.
[10] M.K. Simon, S.M. Hinedi and W. C. Lindsey, Digital Communication Techniques:
Signal Design and Detection. Englewood Cliffs, N.J.: Prentice Hall, 1995.
[11] R.W. Chang, “Synthesis of band-limited orthogonal signals for multi-channel data
transmission,” Bell Syst. Tech. J., vol. 45, pp. 1775-1796, Dec. 1966.
[12] S.B. Weinstein and P.M. Ebert, “Data transmission by frequency-division multiplexing
using the discrete Fourier transform,” IEEE Trans. Commun. Technol., vol. 19,
pp. 628-634, Oct. 1971.
[13] J.A.C. Bingham, “Multicarrier modulation for data transmission: An idea whose
time has come,” IEEE Commun. Mag., vol. 28, pp. 5-14, May 1990.
[14] C.D. Chung, “Orthogonally-multiplexed orthogonal amplitude modulation family,”
IEEE Trans. Commun., vol. 50, pp. 415-428, Mar. 2002.
[15] C.D. Chung, “Coherent and differentially coherent detections of orthogonallymultiplexed
orthogonal phase modulated signals,” IEEE Trans. Commun., vol. 4,
pp. 428-440, Mar. 2003.
[16] C.D. Chung, “A new modulation class,” An invited talk at the Da-Yeh University,
Yuan-Lin,Taiwan, R.O.C., 1999.
[17] C.D. Chung, “Differential detection of quadrature frequency/phase modulated signals,”
IEEE Trans. Commun., vol. 47, pp. 546-557, Apr. 1999.
[18] O.M. El-Ghandor and D. Saha, “Differential detection in quadrature-quadrature
phase shift keying (Q2PSK) systems,” IEEE Trans. Commun., vol. 39, pp. 703-712,
May 1991.
[19] I. Korn and L. Wei, “Q2PSK in the satellite mobile channel with ISI and ICI,” IEEE
Trans. Veh. Technol., vol. 43, pp. 69-78, Feb. 1994.
[20] S.H. Kim and S.W. Kim, “Frequency-hopped multi-access communications with multicarrier
on-off keying in Rayleigh fading channels,” IEEE Trans. Commun., vol. 48,
pp. 1692-1701, Oct. 2000.
[21] P.K. Frenger and N.A.B. Svensson, “Parallel combinatory OFDM signaling,” IEEE
Trans. Commun., vol. 47, pp. 558-567, Apr. 1999.
[22] W. Roehr and D.W. Cameron, “Multicarrier modulation for narrowband PCS,” IEEE
Trans. Veh. Technol., vol. 43, pp. 856-862, Nov. 1994.
[23] B. Muquet, Z.Wang, G.B. Giannakis, M. de Courville, and P. Duhamel,“Cyclic prefix
or zero padding for wireless multicarrier transmission?” IEEE Trans. Commun., vol.
50, pp. 2136-2148, Dec. 2002.
[24] Hirosaki,“An orthogonally multiplexd QAM system using the discrete Fourier transfom,”
IEEE Trans. Commun., vol. 29, pp. 982-989, July 1981.
[25] W.Y. Zou and Y. Wu,“COFDM: An overview,” IEEE Trans. Broadcasting, vol. 41,
pp. 1-8, Mar. 1995.
[26] B.L. Floch, M. Alard and C. Berrou,“Coded orthogonal frequency division multiplex,”
Proc. IEEE, vol. 83, pp. 982-996, June 1995.
[27] C.D. Murphy,“Low-complexity FFT structures for OFDM transceivers” IEEE Trans.
Commun., vol. 50, pp. 1878-1881, Dec. 2002.
[28] C.D. Chung,“Spectrally Precoded OFDM,” IEEE Trans. Commun., vol. 54, pp. 2173
- 2185 , Dec. 2006.
[29] C.D. Chung,“Correlatively coded OFDM,” IEEE Trans. Wireless Commun., vol. 5,
pp. 2044-2049, Aug. 2006.
[30] X.G. Xia, “Precoded and vector OFDM robust to channel spectral nulls and with
reduced cyclic prefix length in single transmit antenna system,” IEEE Trans. Commun.,
vol. 49, pp. 1363-1374, Aug. 2001.
[31] R.W. Bauml, R.F.H. Fischer and J.B. Huber, “Reducing the peak-to-average power
ratio of multicarrier modulation by selected mapping,” Electron. Lett., vol. 32, pp.
2056-2057, Oct. 1996.
[32] J. Tao and Z. Guangxi, “Nonlinear compading transform for reducing peak-to-average
of OFDM signals,” IEEE Trans. Broadcast., vol. 50, pp. 342-346, Sep. 2004.
[33] J. Tellado, MulticarrierDigital Multicarrier Modulation With Low PAR: Applications
to DSL and Wireless. Kluwer Academic Publishers. 2000.