| 研究生: |
任光正 Kuang-Cheng Jen |
|---|---|
| 論文名稱: |
裂隙岩體之基礎承載力異向性與變異性 |
| 指導教授: |
田永銘
Yong-Ming Tien |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 133 |
| 中文關鍵詞: | PFC3D 、合成岩體 、岩石基礎 、徑向膨脹法 、岩石異向性 |
| 外文關鍵詞: | rock foundation |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文以 PFC3D (Particle Flow Code in three dimensions)數值軟體進行裂隙
岩體之工程特性模擬,配合改變基礎長軸與不連續面位態之角度(α、γ)、
裂隙程度(P32)、裂隙直徑(D)、費雪常數(κ)等參數研究,進行岩石基礎承載
力異向性與變異性分析。
研究結果顯示上述參數對於裂隙岩體之承載力異向性與變異性有不同
程度影響。承載力變異性方面:(1) 承載力變異係數與傾角(α)具有倒 U 型
關係。(2) 承載力變異係數隨γ(基礎長軸與不連續面走向交角)增加而降
低,當γ=90 ゚時變異係數最低。(3) 裂隙程度、裂隙直徑越大,承載力變異
性越明顯。費雪常數越大,承載力隨α改變之變異性與異向性趨勢相反。而
在承載力異向性方面:(4) 裂隙程度、裂隙直徑、費雪常數越大,承載力異
向性越明顯。(5) 承載力隨傾角(α)具有 U 型關係,與單壓強度之異向性相
似。(6) 承載力隨α與γ而變動,而α的影響比γ顯著,且當γ=0 ゚時,承
載力最低,故以γ=0 ゚進行分析,可獲致偏保守側之承載力。(7) 基於數值
模擬結果,本文提出裂隙位態對基礎承載力分級之建議,可介接 RMR 分類
法針對岩石基礎之評分調整。
The research uses PFC3D (Particle Flow Code in three dimensions)
numerical software to simulate the engineering characteristics of fractured
rock masses, and introduces the discrete element method (Discrete Element
Method) using radial expansion from the Finite Element Method (Finite
Element Method) mesh size concept. Radial Expansion), used to quickly
check the characteristics of large-scale rock foundation engineering, with
orientation of discontinuities, fracture intensity (P32), diameter of
discontinuities (D), Fisher constant (κ) these parametric research and
analysis of the optimal orientation of the rock foundation.
Conclusions: (a) The greater anisotropy ratio, the greater difference
in strength between different orientation. (b) Both dip and dip-direction of
discontinuities have an anisotropic influence on the bearing capacity. (c)
When D and P32 increase, the bearing capacity decreases. (e) When the rate
of bond replacement is over 50% in simulation, the SRM will fail. (f) The
coefficient of variation will increase with greater D、 P32、κ, it presents
the uncertainty of the bearing capacity has the positive relationship with
anisotropy ratio(AR). (g) When the long axis of the foundation is
orthogonal to the strike of the discontinuity, the bearing capacity will
increase and the anisotropy will decrease compared to other orientation.
1. 黃玉麟,「崩積地層的組成及形成機制-以梨山地區為例」,國立交通大學土木工程系,碩士論文,新竹(2006)。
2. 廖智偉,「膠結不良砂岩淺基礎模型承載行為」,國立交通大學土木工程系,碩士論文,新竹(2003)。
3. 劉英助,「人造膠結不良砂岩之模型承載試驗設備建立與淺基礎承載試驗」,國立交通大學土木工程系,碩士論文,新竹(2002)。
4. 劉家豪,「橫向等向性合成岩體之力學行為及其變異性」,國立中央大學土木工程系,碩士論文,中壢(2019)。
5. 劉家豪、田永銘、裴文斌、黃致維、任光正,「以合成岩體模擬橫向等向性岩體之力學行為」,第十八屆大地工程學術研討會,國立屏東科技大學,屏東(2020)。
6. 劉盛華,「梨山崩積層內軟弱材料之力學行為」,國立交通大學土木工程系,碩士論文,新竹(2006)。
7. 盧育辰,「以UDEC模擬互層材料之力學行為」,國立中央大學土木工程系,碩士論文,中壢(2009)。
8. Bell, F. G., Engineering in Rock Masses, Butterworth – Heinemann, Oxford (1992).
9. Bieniawski, Z.T., Engineering Rock Mass Classifications, A Wiley-interscience publication, American, pp.7 (1989).
10. Boussinesq, M.J., Applications des potentials, a l’etude de l’equilibre et du movement des solides elastique. Gauthier-Villars, Paris (1885).
11. Bray, J., Unpublished notes, Imperial College, London (1977).
12. Einstein, H.H., and Baecher, G.B., “Probabilistic and statistical methods in engineering geology,” Rock Mech Rock Eng, Vol. 16, pp.39-72 (1983).
13. Goodman, R. E., Introduction to Rock Mechnics, 2nd edn, John Wiley, Chichester, pp. 562 (1989).
14. Goodman, R.E. Introduction to Rock Mechanics, Wiley, New York, pp. 8–305 (1980).
15. Ivars, D., Pierce, M., Gagne, D. and Darcel, C., “Anisotropy and scale dependency in jointedrock mass strength-a synthetic rock massstudy,” Proceedings of the First International FLAC/DEM Symposium on Numerical Modeling, pp. 231-239 (2008).
16. Kulatilake, P.H.S.W., Malama, B., and Wang, J., “Physical and particle flow modeling of jointed rock block behavior under uniaxial loading,” Int J Rock Mech Min Sci, Vol. 38, pp. 641-657 (2001).
17. Ladanyi, B. and Roy, A., Some aspects of the bearing capacity of rock mass. Proc. 7th Canadian Symp. Rock Mechanics, Edmonton (1971).
18. Lei, Q., Latham, J.P., and Tsang, C.F., “The use of discrete fracture networks for modelling coupled geomechanical and hydrological behavior of fractured rocks,” Computers and Geotechnics, Vol. 85, pp. 151-176 (2017).
19. Ivars, D., Pierce, M., Darcel, C., Reyes-Montes, J., Potyondy, D.O., Young, R.P., and Cundall, P.A., “The synthetic rock mass approach for jointed rock mass modelling,” Int J Rock Mech Min Sci, Vol. 48(2), pp. 219-244 (2011).
20. Pierce, M., Ivars, D.M., and Sainsbury, B., “Use of Synthetic Rock Masses (SRM) to Investigate Jointed Rock Mass Strength and Deformation Behavior,” In: Anonymous proceedings of the international conference on rock joints and jointed rock masses, Tucson, Arizona, USA. (2009).
21. Potyondy, D.O., and Cundall, P.A., “A bonded-particle model for rock,” Int J Rock Mech Min Sci, Vol. 41(8), pp. 1329-1364 (2004).
22. Scholtès, L., and Donze, F.V., “Modelling progressive failure in fractured rock masses using a 3D discrete element method,” Int J Rock Mech Min Sci, Vol. 52, pp. 18-30 (2012).
23. Sowers George F., Introductory Soil Mechanics and Foundation, 4th Edition, Macmillan, New York (1979).
24. Sutcliffe, D. J., Yu, H. S., and Sloan, S. W., “Lower bound solutions for bearing capacity of jointed rock,” Computers and Geotechnics, Vol. 31, no. 1, pp. 23–36 (2004).
25. Wyllie, D.C, and Mah, C. W., Rock Slope Engineering (4th ed.), Taylor & Francis e-Library, pp. 130-242 (2005).