跳到主要內容

簡易檢索 / 詳目顯示

研究生: 黃敬勛
Ching-hsun Huang
論文名稱: 以體積布拉格光柵作為雷射共振腔內反射鏡之縱向模態研究
Study of the longitudinal mode of lasers using volume Bragg grating as the cavity mirror
指導教授: 鍾德元
Te-yuan Chung
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
畢業學年度: 100
語文別: 中文
論文頁數: 76
中文關鍵詞: 體積布拉格光柵雷射縱向模態
外文關鍵詞: longitudinal mode, volume Bragg grating, laser
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 體積布拉格光柵為近代雷射系統中極為重要的元件,其對於雷射的波長選擇及光譜窄化有很大的改善,因此對體積布拉格光柵的研究就顯得十分重要,然而在雷射系統裡,共振腔長是一極為重要的要素,而當使用體積布拉格光柵作為雷射系統之輸出耦合鏡時,該如何計算此雷射系統的有效共振腔長以及其輸出之縱向模態即是此論文探討的重點。
    本論文使用將體積布拉格光柵等效為一有效反射面的概念,配合週期性結構的耦合波理論,推導出體積布拉格光柵有效反射面與光柵表面的距離的表示式,並求得當平面波入射時有效反射面距離隨著入射角度及入射波長改變的變化情形,以及當高斯光束入射時有效反射面距離隨著入射波長改變的變化情形,並將此有效反射面距離納入雷射共振腔之有效共振腔長,計算出雷射輸出之縱向模態行為。


    Volume Bragg grating is an important optical element for laser spectral narrowing and wavelength selection. Therefore, the research of volume Bragg grating is important. The cavity length is a essential factor in a laser system. This paper will mainly talk about how to get the effective cavity length and the longitudinal mode of lasers using volume Bragg grating as the cavity mirror.
    In this paper, the concept of effective reflection surface is used. The effective reflecting surface distance can be derived from the coupled-mode theory. The formulas of the effective reflection surface distance when incident wave are plane wave or Gaussian wave are derived. The longitudinal mode of lasers using volume Bragg grating as the cavity mirror is discussed.

    目錄 中文摘要 i Abstract ii 致謝 iii 目錄 iv 圖目錄 vi 第一章 序論 1 1.1 前言 1 1.2 研究動機 3 第二章 原理 5 2.1 體積布拉格光柵 (Volume Bragg grating, VBG) 5 2.1.1 Photo-thermo-refractive glass (PTR glass) 5 2.1.2 VBG製作原理 7 2.1.3 VBG的光學特性 8 2.1.4 Coupled-mode theory 11 2.2 雷射共振腔縱向模態特性 21 2.3 Gaussian Beams Optics 25 第三章 平面波入射之 VBG有效反射平面距離 31 3.1 有效反射平面距離與入射波長的關係 31 3.2 有效反射平面距離與入射角度的關係 38 3.3 數值模擬 42 第四章 高斯光束入射之 VBG有效反射面行為 45 4.1 平面波展開法 45 4.2 符合共振腔條件之波前 (wavefront match) 50 4.3 符合共振腔條件之有效反射面距離 (Phase match) 58 第五章 以VBG做為雷射共振腔反射鏡 之縱模分析 63 5.1 多個有效反射面對縱向模態的影響 63 5.2 不同共振腔長下之縱向模態行為 66 第六章 結論及未來展望 73 6.1 結論 73 6.2 未來展望 75 參考文獻 76

    參考文獻
    1. Baker, C.E., Laser display technology. IEEE, 1968. 5(12): p. 39-50.
    2. Paboeuf, D., et al., Narrow-line coherently combined tapered laser diodes in a Talbot external cavity with a volume Bragg grating. Applied Physics Letters, 2008. 93(21).
    3. Kopf, D., et al., Mode-locked laser cavities with a single prism for dispersion compensation. Applied Optics, 1996. 35(6): p. 912-915.
    4. Abe, H., et al., Single-Mode Operation of a Surface Grating Distributed-Feedback Gaas-Algaas Laser with Variable-Width Wave-Guide. Ieee Photonics Technology Letters, 1995. 7(5): p. 452-454.
    5. Efimov, O.M., L.B. Glebov, and V.I. Smirnov, High-frequency Bragg gratings in a photothermorefractive glass. Optics Letters, 2000. 25(23): p. 1693-1695.
    6. Te-yuan Chung, A.R., Vadim Smirnov, Leonid B. Glebov, Martin C. Richardson, and Michael Bass, Solid-state laser spectral narrowing using a volumetric photothermal refractive Bragg grating cavity mirror. OPTICS LETTERS, 2006. 31(2): p. 229-231.
    7. Volodin, B.L., et al., Wavelength stabilization and spectrum narrowing of high-power multimode laser diodes and arrays by use of volume Bragg gratings. Optics Letters, 2004. 29(16): p. 1891-1893.
    8. Jacobsson, B., et al., Widely tunable Yb : KYW laser with a volume Bragg grating. Optics Express, 2007. 15(3): p. 1003-1010.
    9. Sato, K., A. Hirano, and H. Ishii, Chirp-compensated 40-GHz mode-locked lasers integrated with electroabsorption modulators and chirped gratings. Ieee Journal of Selected Topics in Quantum Electronics, 1999. 5(3): p. 590-595.
    10. Barmenkov, Y.O., et al., Effective length of short Fabry-Perot cavity formed by uniform fiber Bragg gratings. Optics Express, 2006. 14(14): p. 6394-6399.
    11. Jacobsson, B., V. Pasiskevicius, and F. Laurell, Single-longitudinal-mode Nd-laser with a Bragg-grating Fabry-perot cavity (vol 14, pg 9284, 2006). Optics Express, 2007. 15(15): p. 9387-9387.
    12. A. Yariv, P.Y., Optical wave in crystals. 1984. p. 177-201.
    13. Quimby, R.S., Photonics and Lasers. 2006. p. 293-306.
    14. B. E. A. Saleh, M.C.T., Fundamentals of Photonics. Second edition ed. 2007. p. 74-83.
    15. Goodman, J., ed. Introduction to Fourier Optics. 1968: New York.

    QR CODE
    :::