| 研究生: |
蔡松霖 Sung-lin Tsai |
|---|---|
| 論文名稱: |
新型熱熔膠拋光墊的研製及其對單晶矽與不銹鋼材料之拋光研究 A study on the manufacturing of new hot melt adhesive polishing pad and its effects on polishing monocrystalline silicon and stainless steel workpiece |
| 指導教授: |
顏炳華
Biing-hwa Yan |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 120 |
| 中文關鍵詞: | 磁性流體 、單晶矽 、表面粗糙度值 、熱熔膠 、拋光墊 |
| 外文關鍵詞: | surface roughness, silicon, Hot melt adhesive, Polishing pad, Magnetic compound fluid |
| 相關次數: | 點閱:8 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
拋光墊(Polishing pad)的應用是使工件達到精微表面拋光,可有效
移除工件表面凹凸及平坦化的效果。拋光墊的發展可追溯至人類遠古
時期對於玉、青銅器及寶石的鏡面拋光。近年隨著半導體技術發展與
應用,半導體晶圓等材料表面的精密拋光亦顯重要,拋光墊的發展也
日新月異。目前眾多研磨拋光的發展,通常以針對拋光條件或拋光機
制進行探討居多,對於開發新式拋光墊的研究文獻甚少。本研究針對
此課題,利用實際製作拋光墊與拋光實驗,深入分析探討其對工件表
面形貌的影響。
在實驗方面,本研究研製了新型熱熔膠拋光墊(Hot melt adhesive
pad, HMA pad)並以其對單晶矽進行拋光實驗,同時亦利用磁性流體
(Magnetic compound fluid, MCF)對SUS-304 不銹鋼工件進行研磨拋光
實驗。研究結果發現,自製熱熔膠拋光墊噴塗距離的控制攸關拋光墊
的好壞與性質;不同披覆磨粒型態的熱熔膠拋光墊,其中以混合磨粒
含量5w.t%者對於研磨單晶矽有較佳的表面粗糙度與均勻度。對於單
晶矽次表面層的研究發現,損傷層約100-150 nm、非晶矽層約10 nm。
由磁性流體對單晶矽表面研磨研究發現,磁性流體對改善表面形貌的
效果非常顯著,表面粗糙度由初始0.25μm 降至0.031μm。而藉由配
製磁性流體的研究發現,配製磁流體以矽油黏度1000 mm2/s 含量30g、
羰基鐵粉含量20g、四氧化三鐵含量1g、氧化矽含量0.1g 及矽烷偶
聯劑含量1g 可獲得6 小時的懸浮效果;SUS-304 不銹鋼經熱熔膠拋
光墊結合磁性流體研磨,其表面粗糙度值可降至0.068 μm。利用兩磁
極方式(相吸、相斥)皆較單磁極有較佳的研磨效果。
Polishing pad is an effective tool for polishing workpiece by
removing roughness on the surface. Use of polishing pad can be traced
back to the ancient mirror polishing of objects of jade, bronze and
precious stone. With the development and application of semiconductor
production technology and wafer surface polishing the development of
polishing pads is also growing in fast pace. While a lot of researches on
the polishing conditions and mechanisms have been conducted few
studies can be found with the making of new polishing pads. This study
focuses at the combined effects on surface profiles of workpieces
polished by newly developed polishing pads and polishing conditions.
This study employs custom made hot melt adhesive (HMA) pad to
polish silicon workpiece surface and SUS-304 stainless surface together
with magnetic compound fluid (MCF). The experiments results show that
the quality of HMA pad is highly dependent upon the spraying distance
when coating pad surface. Surface of HMA pad coated with 5 w.t%
grain mixture is of better surface roughness and uniformity (WIWNU)
when polishing silicon workpiece. With respect to sub-surface layer of
silicon workpiece it is found that the thickness of damage layer is around
100-150 nm and the amorphous silicon layer around 10 nm. When
applying MCF polishing to silicon workpiece it is found that better
surface quality may be improved as well. For magnetic compound fluid
used in stainless workpiece polishing it is found that a mixture of 30 gram
silicon oil with 1000 mm2/s viscosity, 10 gram of carbonyl iron powder,
1 gram of ferric ferrous oxide, 0.1 gram silica and 1 gram of Silane
coupling agent may give a 6-hour may reach a suspension effect up to 6
hours. Surface roughness of SUS-304 stainless workpiece may be
reduced to 0.068 μm after polished by HMA pad together with MCF as
dual magnetic poles (either attraction or repulsion) always led to better
iii
polishing results when compared with single magnetic pole one.
1. 林建榮、林必窕、林慶福, “半導體平坦化CMP 技術”, 1998.
2. E. Brinksmeier, O. Riemer, A. Gessenharter, L.Autschbach,
“Polishing of Structured Molds”, CIRP Annals-Manufacturing
Technology 53, 2004, pp. 247-250.
3. F. J. Shiou, , C. H. Cheng, “Ultra-precision surface finish of NAK80
mould tool steel using sequential ball burnishing and ball polishing
processes”, Journal of materials processing technology 201, 2008, pp.
554-559.
4. V. C. Venkatesh, S. Izman, S. C. Mahadevan, “Electro-chemical
mechanical polishing of copper and chemical mechanical polishing
of glass”, Journal of Materials Processing Technology 149, 2004, pp.
493-498.
5. D. A. Axinte, M. Kritmanorot, M. Axinte, N. N. Z. Gindy,
“Investigations on belt polishing of heat-resistant titanium alloys”,
Journal of Materials Processing Technology 166, 2005, pp.398-404.
6. 林育萱, “軟性拋光墊之平坦化機制探討:由機械性質量測至理論
模型驗證”, 中正大學 碩士論文, 2008.
7. K. Park, J. Park, B. Park, H. Jeong, “Correlation between break-in
characteristics and pad surface conditions in silicon wafer polishing”,
Journal of Materials Processing Tech. 205, 2008, pp. 360-365.
8. M. Y. Tsai, L. W. Yan, “Characteristics of chemical mechanical
polishing using graphite impregnated pad”, International Journal of
Machine Tools and Manufacture 50, 2010, pp. 1031-1037.
9. H. Lu, Y. Obeng, K. A. Richardson, “Applicability of dynamic
mechanical analysis for CMP polyurethane pad studies”, Materials
Characterization 49, 2002, pp. 177-186.
10. 申鐵龍, H∞控制理論及應用.北京:清華大學出版社, 1994.
115
11. Y. Tomita, H. Eda, “A study of the ultra precision grinding process
on a magnetic disk substrate-development of new bonding materials
for fixed abrasives of grinding stone”, Wear 195, 1996, pp.74-80.
12. J. D. Yang, X. H. Wen, Y. Q. Zhu, “Discussing on solid abrasive
lapping path”, Chinese Journal of Mechanical Engineering 10, 1997,
pp. 101-105.
13. 韓榮久、孫恒德、徐德全等, “單晶矽片的低溫拋光技術”, 光學精
密工程6, 1998, pp.104-10.
14. M. Matsumoto, K. Suzuki, T. Sakamoto, “Technology challenges for
advanced Cu CMP using a new slurry-free process”, Interconnect
Technology,IEEE International Conference 24, 1999, pp. 92-94.
15. 張雲, “固著磨料低溫拋光的研究”,長春, 吉林工業大學, 1999.
16. A. Romer, “STI CMP Using Fixed Abrasive:Demand Measurement
Methods and Results”, Proceedings of the Fifth International
Chemical Mechanical Polish for ULSI Multilevel Interconnection
Conference,Santa Clara, 2000, pp. 265.
17. P. V. D. Velden, “Chemical mechanical polishing with fixed
abrasives using different sub-pads to optimize wafer uniformity”,
Microelectronic Engineering 50, 2000, pp. 41-46.
18. V. H. Nguyen, A. J. Hof, H. V. Kranenburg, “Copper chemical
mechanical polishing using a slurry-free technique”, Microelectronic
Engineering 55, 2001, pp. 305-312.
19. J. Gagliardi, R. Webb, C. Rueb, “Fixed abrasive and selective
chemistries:some real advantages for direct STI CMP”, Proceedings
of 2002 CMP-MIC, 2002, pp. 288-290.
20. B. Hooper, J. G. Byrne, “Pad conditioning in chemical mechanical
polishing”, Journal of Materials Processing Technology 123, 2002,
pp. 107-113.
116
21. 楊建東、朱豔秋、任長根等, “機械密封研磨模具均勻磨損探討”,
農業機械學報 29, 1998, pp.108-112.
22. H. Nakamura, J. Yan, K. Syoji, Y. Wakamatsu “Development of a
polishing disc containing granulated fine abrasive”, Key Engineering
Materials 238, 2003, pp. 257-262.
23. J. McGrath, C. Davis, “Polishing pad surface characterisation in
chemical mechanical planarization”, Journal of Materials Processing
Technology 153, 2004, pp. 666-673.
24. J. Y. Choi, H. D. Jeong, “A study on polishing of molds using
hydrophilic abrasive pad”, International Journal of Machine Tools
and Manufacture 44, 2004, pp.1163-l169.
25. H. Kim, B. Park, S. Lee, “Self-conditioning fixed abrasive pad in
CMP”, Journal of Electrochemical Society 151, 2004, pp. 858- 862.
26. W. H. Huang, S. Tamilmani, C. Anderson, “Material removal
and particulate generation during abrasion of copper films using a
fixed abrasive pad”, IEEE Transactions on Semiconductor
Manufacturing 17, 2004, pp. 525-530.
27. T. Tateishi, Q. Gao, Y. Tani, “Development of a high-porosity fixed
abrasive pad utilizing catalytic effects of TiO2 on polyurethane
matrix”, CIRP Annuals-Manufacturing Technology 55, 2006, pp.
321-324.
28. B. H. Lv, J. L .Yuan, Yao, Y. X. “Study on fixed abrasive lapping
technology for ceramic balls”, Materials Science Forum 532-533,
2006 , pp. 460-463.
29. 余振中, “採用冰凍磨具的矽片塑形模態加工機理及工藝研究”,
南京航空航太大學, 2007.
30. 陳勁弛,“化學機械拋光墊之設計與動態黏彈模擬分析研究",
勤益科技大學 碩士論文, 2008.
117
31. L. C. Zhang, A. Q. Biddut, “Dependence of pad performance on its
texture in polishing mono-crystalline silicon wafers”, International
Journal of Mechanical Sciences 52, 2010, pp. 657-662.
32. S. H. Li, R. Miller, “Chemical mechanical polishing in silicon
processing”, Academic Press, New York, Semiconduct Semimet 63,
2000.
33. M. Kulawski, H. Luoto, K. Henttinen, T. Suni, F. Weimar, J.
Makinen,“ Polishing of bulk micro-machined substrates by fixed
abrasive pad for smoothing and planarization of MEMS structure”,
IEEE/SEMI Advanced Semiconductor Manufacturing conference,
2005 , pp. 5-10.
34. H. Tam, “CMP Defect Reduction by Pad Design and Particle
engineering”, JSR Micro Material innovation, 2004.
35. K. P. Menard, “Dynamic Mechanical Analysis”, A Practical
Introduction”, CRC, 1999.
36. M. Moinpour, A. Tregub, A. Oehler, K. Cadien,“Advances in
characterization of CMP consumables”, MRS Bulletin 27, 2002,
pp.766-771.
37. J. Yan, T. Asami, H. Harada, T. Kuriyagawa, “Nondestructive
measurement of machining-induced amorphous layers in
single-crystal silicon by laser micro-Raman spectroscopy”, Precision
Engineering 32, 2008, pp. 186-195.
38. A. Allan, D. Edenfeld, W. H. Joyner, “2001 Technology Roadmap
for Semiconductors”, 2001 Technology Roadmap for Semiconductors
Computer 35, 2002, pp. 42-53.
39. P. Gargini, “The 2002 International Technology Roadmap for
Semiconductors.In:H.Huff.9th International Symposium on Silicon
Materials Science and Technology”, Pennington:Electrochemical
118
Socity Ine 2, 2002, pp. 5-19.
40. 楊力,“先進光學製造技術”, 北京,科學出版社, 2001.
41. P. B. Zantye, “Chemical mechanical planarization for
microelectronicsApplications”, Materials Science and Engineering R
45, 2004, pp. 89-220.
42. C. C. Chen, L. S. Shua, S. R. Lee, “Mechano-chemical polishing of
silicon wafers”, Journal of Materials Processing Technology 140,
2003, pp. 373-378.
43. Z. J. Pei, G. R. Fisher, J. Liu, “Grinding of silicon wafers: A review
from historical perspectives”, International Journal of Machine Tools
& Manufacture 48, 2008, pp.1297-1307.
44. D. Golini, W. I. Kordonski, P. Dumas, S. Hogan,
“Magnetorheological finishing (MRF) in commercial precision optics
manufacturing”, Proc. SPIE 80, 1999. pp. 3782.
45. W. I. Kordonski, S. D. Jacobs, D. Golini, E. Fess, D. Strafford, J.
Ruckman, M. Bechtold, “Vertical wheel magnetorheological
finishing machine for flats convex, and concave surfaces”, pp.
146-149 in optical Fabrication and Testing workshop,7, OSA
Technical Digest Series, edited by the Optical Society of America,
Wash., DC, 1996.
46. S. D. Jacobs, W. I. Kordonski, I. V. Prokhorov, D. Golini, S.
Gorodkin, T. D. Strafford, “Deterministic Magnetorheological
Finishing”, U.S. Patent No 5,795, 212, Aug. 18, 1998.
47. T. Furuya, Y. Wu, M. Nomura, K. Shimada, K. Yamamoto,
“Foundamental performance of magnetic compound fluid polishing
liquid in contact-free polishing of metal surface”, Journal of
Materials Processing Technology 201, 2008, pp. 536-541.
48. K. Shimada, Y. Matsuo, K. Yamamoto, Y. Zheng, “Study on new float
polishing with the MCF”, Journal of Achievements in Materials and
119
Manufacturing Engineering 23, 2007, pp. 91-94.
49. K. Shimada, Y. Wu, Y. C. Wong, “Effect of magnetic cluster and
magnetic fluid on polishing using magnetic compound fluid (MCF)”,
Journal of Magnetism and Magnetic Materials 262, 2003, pp.
242-247.
50. 黃忠良,“磁性流體理論應用”, 復漢出版社, 2001.
51. D. J. Shaw, “Introduction to colloid and surface chemistry e/4”,
Butterworth Heinemann, 1980.
52. G. W. Reimers, S. E. Khalafalla, “Production of Magnetic Fluids by
Peptization Techniques", U. S. Patent, 1974. No.3843540.