跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳沛煜
Pei-Yu Chen
論文名稱: 銻化物高電子遷移率場效電晶體之閘極微縮製程發展與元件特性研究
Gate Shrinking and Device Charactrtization for Antimonide Based HEMTs Development
指導教授: 蔡曜聰
Yao-Tsung Tsai
林恒光
Heng-Kuang Lin
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 100
語文別: 中文
論文頁數: 127
中文關鍵詞: 砷銻化銦砷化銦次微米高電子遷移率場效電晶體電子束微影
外文關鍵詞: HEMT, e-beam lithography, submicron, InAsSb, InAs
相關次數: 點閱:31下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 銻化物系列材料由於擁有卓越的載子傳輸特性,因此非常適合應用於低功率及高速度的電子元件。在本論文中成功製作出高頻應用之高效能砷化銦/銻化鋁高電子遷移率電晶體,並且做了深入的分析與探討。
    首先為了提升高電子遷移率電晶體之特性,利用電子束微影系統發展縮小閘極線寬的技術。在電子束微影製程發展中利用ZEP/LOR/ZEP阻劑來取代傳統PMMA/P(MMA-MAA)阻劑所能達到最小的閘極線寬為35nm。另外,藉由減少源極與汲極間距來進一步提升高電子遷移率電晶體的性能。因此發展了幾種因應元件尺寸微縮之製作方式,包括標準製程、T型閘極自我對準製程及掘入式閘極製程。其中標準製程元件擁有最好的電性表現,在閘極長度Lg=0.2μm,源極與汲極間距LDS=1.5μm的元件上,汲極飽和電流於汲極偏壓VDS=0.4V時為733mA/mm,轉導特性gm=1520mS/mm,高頻增益部分電流增益截止頻率fT=105GHz與功率增益截止頻率fMAX=132GHz。此元件微縮製程大幅改善了直流特性與高頻特性,且電流增益截止頻率相較於閘極長度為2μm的元件提升了10倍。


    Sb-based HEMTs have great promise for low-power and high-speed applications because of their superior carrier transport properties. In this thesis, high-performance InAs/AlSb high-electron-mobility transistors have been fabricated and characterized for high-frequency applications.
    Device performance was successfully improved by shrinking the gate length using electron beam lithography system. Traditional PMMA/ P(MMA-MAA) e-beam resists were replaced by ZEP/LOR/ZEP e-beam resists and a smallest gate length of 35nm was succesfully achieved. In addition, devices with small source-to-drain spacing were fabricated to promote high-frequency performance of the HEMTs. Several different methods were developed to narrow down device dimension, including standard process, self-aligned process and gate recess process. A standard device with 0.2μm gate length and 1.5μm source-to-drain spacing showed the best DC and RF performance. Maximum drain current of 733mA/mm and extrinsic transconductance of 1520mS/mm were obtained at a drain voltage of 0.4V. A current gain cut-off frequency of 105GHz and a power gain cut-off frequency of 132GHz were successfully demonstrated. The current gain cut-off frequency of a 0.2μm-gate-length device was raised 10 times compared with a 2μm-gate-length device.

    摘要I ABSTRACTII 誌謝III 目錄IV 圖目錄VIII 表目錄XV 第一章 導論1 1-1 研究動機1 1-2 銻化物系統之高速電子遷移率電晶體發展現況3 1-3 T型閘極發展現況7 1-4 論文架構12 第二章 磊晶結構設計與分析13 2-1 前言13 2-2 砷化銦/砷化銦鋁保護層磊晶結構13 2-3 高摻雜砷化銦保護層磊晶結構16 2.3.1 In0.2Al0.8Sb/InAs/In0.2Al0.8Sb量子井磊晶結構16 2.3.2 In0.2Al0.8Sb/InAs0.81Sb0.19/In0.2Al0.8Sb量子井磊晶結構19 2.3.3 In0.2Al0.8Sb/InAs0.62Sb0.38/In0.2Al0.8Sb量子井磊晶結構21 2.3.4 理論計算應力對能帶結構的影響24 2-4 結論31 第三章 T型閘極製程發展與元件製作32 3-1 前言32 3-2 T型閘極製程發展32 3.2.1 電子束微影技術32 3.2.2 T型閘極製程發展33 3-3 元件製作流程46 3.3.1 標準製程元件47 3.3.2 T型閘極自我對準元件49 3.3.3 掘入式閘極元件50 3-4 結論55 第四章 元件特性56 4-1 前言56 4-2 標準磊晶結構元件性能56 4.2.1 光學微影閘極之標準製程元件56 4.2.2 電子束微影閘極之標準製程元件62 4.2.3 T型閘極自我對準元件68 4-3 掘入式閘極元件72 4.3.1 In0.2Al0.8Sb/InAs/In0.2Al0.8Sb量子井結構72 4.3.2 In0.2Al0.8Sb/InAs0.81Sb0.19/In0.2Al0.8Sb量子井結構76 4.3.3 In0.2Al0.8Sb/InAs0.62Sb0.38/In0.2Al0.8Sb量子井結構79 4-4 結論82 第五章 討論83 5-1 前言83 5-2 不同元件尺寸對元件特性之影響83 5-3 不同製程方式對元件特性之影響90 5-4 高摻閘保護層元件特性討論95 5-5 結論104 第六章 結論與未來發展105 參考文獻108 附錄1 一階段曝寫T型閘極製程112 附錄2 二階段曝寫T型閘極製程I113 附錄3 二階段曝寫T型閘極製程II115 附錄4 標準製程117 附錄5 T型閘極自我對準製程121 附錄6 掘入式閘極製程124

    [1].J. B. Boos, W. Kruppa, B. R. Bennett, D. Park, S. W. Kirchoefer., “AlSb/InAs HEMTs for low-voltage, high-speed applications,” IEEE Trans. Electron Devices, vol. 45, no. 9, pp. 1869-1875, Sep. 1998.
    [2].C. Nguyen, B. Brar, C. R. Bolognesi, J. J. Pekarik, H. Kroemer, and J. H. English, “Growth of InAs/AlSb quantum wells having both high mobilities and high electron concentrations,” J. Electron. Mat., vol. 22, no. 2, pp. 255-258, Jul. 1992.
    [3].C. A. Chang, R. Ludeke, L. L. Chang, L. Esaki, “Molecular-beam epitaxy (MBE) of In1-xGaxAs and GaSb1-yAsy,” Appl. Phys. Lett., vol. 31, no. 11, pp. 759-761, Dec. 1977.
    [4].M. Yano, Y. Suzuki, T. Ishii, Y. Matsushima, M. Kimata, ”Molecular Beam epitaxy of GaSb and GaSbxAs1-x,” Jpn. J. Appl. Phys., vol. 17, no. 12, pp. 2091-2096, May 1978.
    [5].R. Ludeke, “Electronic properties of (100) surfaces of GaSb and InAs and their alloys with GaAs,” IBM J. Res. Dev., vol. 22, no. 3, pp. 304-314, May 1978.
    [6].R. Tsai, M. Barsky, J. B. Boss, J. Lee, N. A. Papanicolaou, R.Magno, C. Namba, P. H. Liu, D. Park, R. Grundbacher and A. Gutierrez “Metamorphic AlSb/InAs HEMT for Low-Power, High-Speed Electronics,” Proc. IEEE GaAs Dig., Nov. 2003.
    [7].G. Tuttle, H. Kroemer, J. H. English, “Electron concentrations and mobilities in AlSb/InAs/ AlSb quantum wells,” J. Appl. Phys., vol. 65, no.12, pp. 5239-5242, Feb. 1989.
    [8].G. Tuttle, H. Kroemer, J. H. English, “Effects of interface layer sequencing on the transport-properties of InAs/AlSb quantum wells evidence for antisite donors at the InAs/AlSb interface,” J. Appl. Phys., vol.67, no. 6, pp. 3032-3037, Nov. 1990.
    [9].C. R. Bolognesi, H. Kroemer, J. H. English, “Well width dependence of electrontransport in molecular-beam epitaxially grown InAs/AlSb quantum-wells,” J. Vac. Sci Technol. B, vol. 10, no. 2, pp. 877-879, Mar. 1992.
    [10].R. Venkatasubramanian, D. L. Dorsey, K. Mahalingam, ”Heuristic rules for group IV dopant site selection in III–V compounds,” J. Cryst. Growth, vol. 175, pp. 224-228, May 1997.
    [11].Y. Zhao, M. J. Jurkovic, W. I. Wang, “Kink-free characteristics of AlSb/InAs high electron mobility transistors with planar Si doping beneath the channel,” IEEE Trans. Electron Device, vol. 45, no. 1, pp. 341-342, Jan. 1998.
    [12].C. R. Bolognesi, M. W. Dvorak, D. H. Chow, “High-transconductance delta-doped InAs/ AlSb HFET’s with ultrathin silicon-doped InAs quantum well donor layer,” IEEE Electron Device Lett., vol. 19, no. 3, pp. 83-85, Mar. 1998.
    [13].B. R. Bennett, M. J. Yang, B. V. Shanabrook, J. B. Boos, D. Park, ”Modulation doping of InAs/AlSb quantum wells using remote InAs donor layers,” Appl. Phys. Lett., vol. 72, no. 10, pp. 1193-1195, Jan. 1998.
    [14].C. R. Bolognesi, J. E. Bryce, D. H. Chow, “InAs channel heterostructurefield effect transistors with InAs/AISb short-period superlattice barriers,” Appl. Phys. Lett., vol. 69, no. 23, pp.3531-3533, Sep. 1996.
    [15].S. Subbanna, G. Tuttle, H. Kroemer, “N-type doping of gallium antimonide and aluminum antimonide grown by molecular-beam epitaxy using lead-telluride as a tellurium dopant source,” J. Electron. Mater., vol. 17, no.4, pp. 297-303, Dec. 1988.
    [16].B. R. Bennett, R. Magno, J. B. Boos, W. Kruppa, M. G. Ancona, “Antimonide-based compound semiconductors for electronic devices: A review,” Solid State Electron., vol.49, no. 12, pp. 1875-1895, Dec. 2005.
    [17].B. R. Bennett, R. Magno, and N. Papanicolaou, “Controlled n-type doping of antimonides and arsenides using GaTe,” J. Cryst. Growth, vol. 251, no. 1-4, pp. 532-537, Apr. 2003.
    [18].B. Y. Ma, J. Bergman, P. Chen, J. B. Hacker, G. Sullivan, G. Nagy, and B. Brar, “InAs/AlSb HEMT and its Application to Ultra-Low-Power Wideband High-Gain Low-Noise Amplifiers,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 12, pp. 4448-4455, Dec. 2006.
    [19].S. Datta, T. Ashley, J. Brask, L. Buckle, M. Doczy, M. Emeny, D. Hayes, K. Hilton, R. Jefferies, T. Martin,T. J. Phillips, D. Wallis, P. Wilding, R. Chau “85nm Gate Length Enhancement and Depletion Mode InSb Quantum Well Transistors for Ultra High Speed and Very Low Power Digital Logic Applications,” IEEE International Electron Devices Meeting, pp.763-766, Dec. 2005.
    [20].T. Suemitsu, T. Ishii, H. Yokoyama, T. Enoki, Y. Ishi, and T. Tamamura, “30-nm-Gate InP-Based Lattice-Matched High Electron Mobility Transistors with 350 GHz Cutoff Frequency,” Jpn. J. Appl. Phys., vol.38, pp. L154-L156, Jan. 1998.
    [21].Y. Todokoro, “Double-Layer Resist Films for Submicrometer Electron-Beam Lithography,” IEEE Solid State Circuits, vol. 15, no. 4, pp. 508-513, Aug. 1980.
    [22].A. S. Wakita, C. Y. Su, H. Rohdin, H. Y. Liu, A. Lee, J. Seeger, and V. M. Robbins, “Novel high-yield trilayer resist process for 0.1 μm T-gate fabrication,” J. Vac. Sci. Technol., vol. 13, no. 6, pp. 2725-2728, Nov. 1995.
    [23].Y. C. Lien, E. Y. Chang, H. C. Chang, L. H. Chu, G. W. Huang, H. M. Lee, C. S. Lee, S. H. Chen, P. T. Shen, and C. Y. Chang, “Low-noise metamorphic HEMTs with reflowed 0.1-μm T-gate,” IEEE Electron Device Lett., vol. 25, no. 6, pp. 348-350, Jun. 2004.
    [24].K. Shinohara, Y. Yamashita, K. Hikosaka, N. Hirose, M. Kiyokawa, T. Matsui, T. Mimura, and S. Hiyamim, “Ultrashort T-shaped gate fabrication technique for InP based HEMTs with high fT (>300 GHz) and their MMIC applications,” Proc. Gallium Arsenide and Other Semiconductors Application Symposium, pp. 252-255, Oct. 2000.
    [25].D. H. Kim, J. A. del Alamo, J. H. Lee, and K. S. Seo, “Logic Suitability of 50-nm In0.7 Ga0.3As HEMTs for Beyond-CMOS Applications,” IEEE Trans. Electron Device, vol. 54, no. 10, pp. 2606-2613, Oct. 2007.
    [26].C. Kadow, M. Dahlstrӧm, J. U. Bae, H. K Lin, A. C. Gossard, M. J. W. Rodwell, B. Brar, G. J. Sullivan, G. Nagy and J. I. Bergman, “n+-InAs-InAlAs Recess Gate Technology for InAs-Channel Millimeter-Wave HFETs,” IEEE Trans. Electron Device, vol. 52, no. 2, pp. 151-158, Feb. 2005.
    [27].B. Brar, “Impact ionization in InAs-AlSb heterostructure field-effect-transistors,” Ph.D. dissertation, UC Santa Barbara, 1995.
    [28].S. H. Wei and Al. Zunger, “InAsSb/InAs: A type-I or a type-II band alignment,” Phys. Rev. B, vol. 52, no. 16, pp. 12039-12044, Oct. 1995.
    [29].I. Vurgaftman, J. R. Meyer and L. R. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” J. Appl. Phys. , vol. 89, no. 11, pp. 5815-5875, Feb. 2001.
    [30].M. Krijn, “Heterojunction band offsets and effective masses in III-V quaternary alloys,” Semicond. Sci. Technol., vol. 6, no. 1,pp. 27-31, Jan. 1991.
    [31].S. L. Chuang, “Physics of Optoelectronis Devices,” A Wiley-Interscience Publicaiton.
    [32].G. Piaszenski, “Basic Resist Theory,” Raith GmbH (http://www.raith.com/).
    [33].J. B. Boss, B. R. Bennett, N. A. Papanicolaou, M. G. Ancona, J. G. Champlain, Y. C. Chou, M. D. Lange, J. M. Yang, R. Bass, D. Park and B. V. Shanabrook, “Sb-Based n- and p-Channel Heterostructure FETs for High-Speed, Low-Power Applications,” IEICE Trans. Electron, pp. 159-162, Jul. 2008.
    [34].E. J. Miller, X. Z. Dang and E. T. Yu, “Gate leakage current mechanisms in AlGaN/GaN heterostructure field-effect transistors,” J. Appl. Phys., vol. 88, no. 10, pp. 5951-5958, Aug. 2000.
    [35].W. S. Tan, P. A. Houston, P. J. Parbrook, D. A. Wood, G. Hill, and C. R. Whitehouse. “Gate leakage effects and breakdown voltage in metalorganic vapor phase epitaxy AlGaN/GaN heterostructure field-effect transistors,” Appl. Phys. Lett., vol. 80, no. 17, pp. 3207-3209, Feb. 2002.
    [36].X. Z. Dang, R. J. Welty, D. Qiao, P. M. Asbeck, S. S. Lau, E. T. Yu, K. S. Boutros and J. M. Redwing, “Fabrication and characterisation of enhanced barrier AlGaN/GaN HFET,” IEEE Electron Lett., vol. 35, no. 7, pp. 602-603, Apr. 1999.
    [37].H. K. Lin, W. Z. He, and H. C. Ho, “Development of InAs/AlSb HEMTs Using Pre-Passivated as-Grown Epitaxies,” J. Electrochem. Soc., vol. 158, no. 10, pp. H1062-H1067, Aug. 2011.

    QR CODE
    :::