跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳裕德
Yu-Te Chen
論文名稱: 自然時效與冷加工對Al-4.6Cu-0.5Mg-0.5Ag合金微結構及機械性質之影響
Effect of Natural Aging and Cold Work on Microstructure and Mechanical Properties of Al-4.6Cu-0.5Mg-0.5Ag Alloy
指導教授: 李勝隆
Sheng-long Lee
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
畢業學年度: 91
語文別: 中文
論文頁數: 45
中文關鍵詞: 冷加工自然時效
外文關鍵詞: Natural Aging
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Al-Cu-Mg-Ag合金為一高強度鋁合金,其強化相主要為Ω與θ’,由文獻中知,當Cu/Mg比在5~10之間,有利於Ω相的析出,加入適量的Ag時,更可促進Ω相於鋁基地的主要滑動面{111}α上析出,因此可提升材料機械強度。Mg、Ag原子於時效期間的聚集,是Ω相的成核點;而θ’相的析出則與差排息息相關,所以θ’析出行為會受加工所影響。故本研究探討主題為自然時效與冷加工對Al-4.6Cu-0.5Mg-0.5Ag微結構及機械性質之影響。
    本研究針對Al-4.6Cu-0.5Mg-0.5Ag施以不同時間的自然時效(0~24小時)及不同的冷加工量(6、13、23、45%),而後於185℃下施行5小時人工時效,利用光學顯微鏡(OM)、導電度(%IACS)、微差掃瞄熱分析儀(DSC)、硬度試驗、拉伸試驗、掃瞄式電子顯微鏡(SEM)、穿透式電子顯微鏡(TEM),探討微結構變化與材料機械性質之對應關係,根據結果以瞭解自然時效處理與冷加工量對Al-4.6Cu-0.5Mg-0.5Ag機械性質之影響。
    由結果可知,Mg、Ag原子能於自然時效初期(五小時內)快速聚集產生Cluster,但由於其在高溫下聚集的速度更快,因此在高溫熱處理後,合金在強化相的析出量及機械性質上並無明顯差異。其差別僅於:若經自然時效處理,能提升合金於人工時效時的析出硬化速率。
    而固溶後隨即冷加工,由於缺陷的生成,阻礙了Mg-Ag的聚集,在人工時效時,能減少Ω相析出,同時由於差排變多,使得θ’析出量較無冷加工的多。加工量越大,抑制Ω相析出效果越顯著,但相對θ’相析出越多,Ω相析出減少雖造成強度降低,但由於加工硬化效果顯著,使得硬度及強度皆有所提升,但不利於延性。


    謝誌……………………………………………….………………………I 摘要……………………………………………………………………II 總目錄……………………………………………………………….….III 圖目錄…………………………………………………………………...V 表目錄…………………………………………………………………..VI 壹、前言……………….……………………………………………….1 一、 Al-Cu-Mg-Ag合金簡介……………………………………….1 二、Al-Cu-Mg-Ag合金之析出強化相………………………….2 三、Cu/Mg比對Al-Cu-Mg-Ag合金析出強化相之影響 …….…4 四、自然時效與加工對於Al-Cu-Mg-Ag合金析出相之影響……4 貳、實驗方法與步驟………………………………………………….8 一、製程階段….……………………………………………………9 1.材料之準備………………………………………………...9 2.熱處理……………………………………………………...9 二、微結構分析……………………………………………………10 1. OM金相觀察………………….……………...…………...10 2.微差掃瞄熱分析儀(DSC).……….……………………..…10 3.導電度(%IACS)量測………………………………………11 4.掃瞄式電子顯微鏡(SEM)…………………………………11 5.穿透式電子顯微鏡觀察(TEM)……………………………11 三、機械性質分析…………………………………………………12 1. 硬度試驗…….…………………………………………12 2. 拉伸試驗………….……………………………………...12 參、結果與討論…………………………………………………………13 一、微結構分析……………………………………………………13 1.金相觀察….………………………………………………..13 2.微差掃瞄熱分析(DSC).……….………………………….15 3.導電度(%IACS)量測………………………………………17 4.穿透式電子顯微鏡(TEM)分析……..……………….22 二、機械性質分析……………………………………………….27 1. 硬度試驗…………………………………………..……27 2. 拉伸試驗………………………………………………..31 肆、結論………………………………………………………………....33 伍、參考資料……………………………………………………………34

    1.William D. Callister,Jr.“Materials Science and Engineering an
    Introduction”,Wiley, 4th ed. ,1996,pp.363
    2.I. J. Polmear, G. Pons, Y. Barbaux, H. Octor, C. Sanchez, A. J. Morton, W. E.
    Borbidge, S. Roger, “ After Concorde: Evaluation of Creep Resistant Al-Cu-Mg-
    Ag Alloys ”, Materials Science and Technology, Vol.15, 1999, pp.861-868
    3.Chunming YAO, Klaus B, “Mueller:Metal Flow and Temperatures Developed During
    Direct Extrusion of AA2024”, Proceeding of the Sixth international Almium
    Extrusion Technology Seminar 1996 ,pp.141-146
    4.S. P. Ringer, K. Hono, T. Sakurai, I. J. Polmear, “ Cluster Hardening in an
    Aged Al-Cu-Mg Alloy ”, Scripta Materialia, Vol.36, No.5, 1997,pp.517-521
    5.William D. Callister,Jr.“Materials Science and Engineering an
    Introduction”,Wiley, 4th ed. ,1996,pp.349-351
    6.J. E. Hatch, “ Aluminum Properties and Physical Metallurgy ” , American
    Society for Metals, Metals Park, Ohio, 1984,pp.362
    7.J. Raffin, US Patent No.3475166, Oct.26, 1969
    8.Kearney, “ Alloy History ”, Trialco Aluminum Data Sheet, Table. 1, Chicago
    Heigth, IL., 1983
    9.I. J. Polmear, M. J. Couper, “ Design and Development of an Experimental
    Wrought Aluminum Alloy for Use at Elevated Temperatures ” , Metallurgical
    Transactions A, Vol.19A, 1988, pp. 1027-1035
    10.B. C. Muddle, I. J. Polmear, “ The Precipctate Ω Phase in Al-Cu-Mg-Ag
    Alloys ” , Acta Metallurgica, Vol.37, No.3, 1989, pp.777-789
    11.K. M. Knowles, W. M. Stobbs, “ The Structure of {111} Age- Hardening
    Precipitates in Al-Cu-Mg-Ag Alloys ” , Acta Crystallographica, B44, 1988,
    pp.207-227
    12.S. P. Ringer, W. Yeung, B. C. Muddle, I. J. Polmear, “ Precipitate
    Stability in Al-Cu-Mg-Ag Alloys Aged at High Temperatures ”, Acta
    Metallurgica et Materialia , Vol.42, No.5, 1994, pp.1715-1725
    13.J. H. Auld, Acta Crystallographica, A28, S98, 1972
    14.S. Kerry and V. D. Scott, Metals. Sci., Vol.18, 1984, pp.289-294
    15.J. H. Auld, Mater. Sci. Technol., Vol.2, 1986, pp.784-787
    16.K. M. Knowles and W. M. Stobbs, “The Structure of {111} Age-Hardening
    Precipitates in Al-Cu-Mg-Ag Alloys” , Acta Crystallographica, B44, 1988,
    pp.207-227
    17.A. Garg and J. M. Howe, “Convergent-Bean Electron Diffraction Analysis of
    the Ω Phase in an Al-4.0Cu-0.5Mg-0.5Ag Alloy” , Acta Metallurgica et
    Materialia, Vol.39, No.8, 1991,pp.1939-1946
    18.A. K. Mukhopadhyay, “ Nucleation of Ω Phase in an Al-Cu-Mg Alloy
    Containing Small Addition of Ag ” , Materials Transactions, JIM, Vol.38,
    No.5, 1997, pp.478-482
    19.S. P. Ringer, K. Hono , I. J. Polmear and T. Sakurai, ”Nucleation of
    Precipitates in Aged Al-Cu-Mg-(Ag) Alloys with High Cu:Mg Ratios” , Acta
    Material, Vol.44, No.5, 1996,pp.1883-1898
    20.K. Hono, T. Sakurai, I. J. Polmear, “ Pre-Precipitate Clustering in an Al-
    Cu-Mg-Ag Alloy ”, Scripta Metallurgica et Materialia, Vol.30, No.6, 1994,
    pp.695-700
    21.A. Garg, Y. C. Chang, J. M. Howe, “ Precipitation of the Ω Phase in an Al-
    4.0Cu-0.5Mg Alloy ”, Scripta Metallurgica et Materialia, Vol.24, 1990,
    pp.677-680
    22.L. Reich, M. Murayama and K. Hono, “Evolution of Ω Phase in an Al-Cu-Mg-Ag
    Alloy–A Three-Dimensional Atom Probe Study” , Acta Material, Vol.46,
    No.17,1998, pp.6053-6062
    23.K. Hono, N. Sano, S. S. Babu, R. Okano, T. Sakurai, “ Atom Probe Study of
    the Precipitation Process in Al-Cu-Mg-Ag Alloys ”, Acta Metallurgica et
    Materialia, Vol.41, No.3, 1993, pp.829-838
    24.R. K. Wyss, R. E. Sanders, “ Microstructure-Property Relationship in a 2xxx
    Aluminum Alloy with Addition ” , Metallurgical Transactions A, Vol.19A,
    1988, pp.2523-2530
    25.M. Takeda, Y. Maeda, A. Yoshida, K. Yabuta, S. Konuma, T. Endo, “
    Discontinuity of G.P.(I) Zone and θ”-Phase in an Al-Cu Alloy ” , Scripta
    Materialia, Vol.41, No.6, 1999, pp.643-649
    26.張志鴻, “ 銀含量對於A201鑄造鋁合金Ω相析出影響 ” , 國立中央大學機械工程研究
    所碩士論文, 2000
    27.R. J. Chester and I. J. Polmear, “TEM Investigation of Precipitates in Al-
    Cu-Mg-Ag and Al-Cu-Mg Alloys” ,Micron, Vol.11, 1980,pp.311-312
    28.莊雅傑,”Cu/Mg比與熱處理對Al-Cu-Mg-Ag合金應力腐蝕性之影響”,國立中央大學機
    械工程研究所碩士論文,2002
    29.John D. Verhoeven, “Fundamentals of Physical Metallurgy”, 1974,pp.353,
    30.William D. Callister,Jr.“Materials Science and Engineering an
    Introduction”,Wiley, 4th ed. ,1996,pp.160.
    31.Robert E. Read-Hill, “Physical Metallurgy Principles”, PWS Publishing
    company, 3rd ed., 1994,pp.248
    32.劉國雄, 林樹均, 李勝隆, 鄭晃忠, 葉均蔚, “ 工程材料科學 ” , 全華科技圖書股份
    有限公司, 1999, pp.334-336
    33.Qiong Li and R. N. Shenoy, “DSC and TEM characterization of thermal
    stability of an Al-Cu-Mg-Ag Alloy”, Journal of Materials Science,
    Vol.32,1997, pp.3401-3406
    34.S. P. Ringer, B. C. Muddle and I. J. Polmear, “Effects of Cold Work on
    Precipitation in Al-Cu-Mg-(Ag) and Al-Cu-Li-(Mg-Ag) Alloys”, Metallurgical
    and Materials Transactions A,Vol.26A,1995, pp.1659-1671,
    35.ASTM B597-83, Annual Book of ASTM Standards, Vol.02.02, 1984
    36.ASTM B557M-81, Annual Book of ASTM Standards, Vol.03.01, 1991
    37.J. E. Hatch, “ Aluminum Properties and Physical Metallurgy ” , American
    Society for Metals, Metals Park, Ohio, 1984, pp.175-177
    38.O. Beffort, C. Solenthaler, M. O. Speidel, “Improvement of Strength and
    Fracture Toughness of a Spray-Deposited Al-Cu-Mg-Ag-Mn-Ti- Zr Alloy by
    Optimize Heat Treaments and Thermomechanical Treatments ”, Materials
    Science & Engineering A191,1995, pp.113-120

    QR CODE
    :::