| 研究生: |
張志暐 Chih-Wei Chang |
|---|---|
| 論文名稱: |
脈衝式曝氣對沉浸式薄膜生物處理系統 積垢控制之探討 An investigation on pulse aeration for fouling control of immersive membrane bioreactor system |
| 指導教授: |
莊順興
Shun-Hsing Chuang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程研究所在職專班 Executive Master of Environmental Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 84 |
| 中文關鍵詞: | 脈衝式曝氣 、異步曝氣 、積垢率 |
| 外文關鍵詞: | Pulse aeration, Asynchronous aeration, Fouling |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
廢水處理程序中,薄膜生物反應器(MBR)近年已被廣泛應用於都市污水處理廠和工業廢水處理系統,在一連串的開發過程中,因處理效率、佔地面積小等優點都超越傳統活性污泥法。然而此系統的操作成本中,曝氣模組系統操作費用遠高於其他操作單元,為了能達到高效能的運轉目的,因此,調整系統參數使薄膜生物反應器(MBR)條件最佳化即為首要目標。
薄膜生物反應器(MBR)的實廠操作中,最常面臨膜堆積垢,除了影響終端水質外,其操作及維保成本也提高,故本研究首先回顧薄膜生物反應器的曝氣參數及其對廢水過濾性能的影響。在脈衝式曝氣研究中,使用異步曝氣方式來誘發薄膜表面上的剪切應力是有效抑制積垢的策略之一,由於脈衝式曝氣中膜絲之間互相作用的擺動較管道式曝氣影響大,所以,脈衝式曝氣有較佳的積垢控制結果。接著在同步和異步曝氣試驗中,為了探討相鄰噴嘴產生的氣泡與膜絲之間相互作用對積垢率的影響,實驗設計在恆定通量條件下,監測跨膜壓力(TMP)分析依據,結果指出,當異步式脈衝曝氣流量於250 dm3 / h且反沖洗流量90 m3 / h的參數搭配,是有利於薄膜積垢速度的趨緩,在歷經90天的測試結果顯示,薄膜平均積垢速率從0.39 kPa / day降至0.21 kPa / day,而在節能效益上,由於將通道式曝氣改為脈衝形式曝氣系統,能源耗用減少約47%,達成高效能運轉目標。
Membrane bioreactor (MBR) is already a well-developed wastewater treatment process for municipal and industrial applications. Nonetheless, membrane fouling remains a significant problem for its more comprehensive development. Aeration is the source of a large part of the operating costs in most industrial-scale plants, and its optimization is necessary to make the process efficient. This paper first reviews the parameters of aeration and their impact on filtration performance. In the investigation of pulse aeration, one of the most efficient strategies to limit fouling is the use of asynchronous aeration flow to enhance the shear stress on the membrane surface. The efficacy of the pulse aeration compared with channel aeration has been attributed to the more significant fluctuations in the interactions among membrane filaments. The trans-membrane pressure (TMP) monitored under constant flux conditions was used to investigate the impact of the interactions among bubbles generated from adjacent nozzles following synchronous and asynchronous bubbling schemes. The experimental results showed that the asynchronous pulse airflow at the condition of 250 dm3/h to match backwash flow of 90 m3/h, respectively, is more beneficial to fouling alleviation. After 90 days test, the average fouling rate is 0.21 kPa/day. Finally, a 47% reduction in the energy usage was achieved by moving from a channel to a pulse form of aeration.
Adams, C. E. and Shelby, S. E., Comparative Overview of Competitive Activated Sludge Configurations for Industrial Wastewaters, Seminar by ENVIRON International Corp. tp AIChE, Baton Kouge, LA, March 14,2008.
Arardy, F.J., Membrane Processes, Processes Design in Water Quality Engineering, E.L. Tackston and W. W. Eckenfelder, eds., Jenkins Publishing Co., Austin, Texas,1972.
Bérubé PR, Afonso G, Taghipour F and Chan CCV, Quantifying the shear at the surface of submerged hollow fiber membranes. J Membr Sci 279: 495-505 (2006).
Böhm L and Kraume M, Fluid dynamics of bubble swarms rising in Newtonian and non-Newtonian liquids in flat sheet membrane systems. J Membr Sci 475:533-544 (2015).
Cartwrigh, W.P.: Chemical Enginnering, McGraw-Hill, September 1994.
Chan CCV, Bérubé PR and Hall ER, Relationship between types of surface shear stress profiles and membrane fouling. Water Res 45: 6403-6416 (2011).
Chang, S.; Fane, A.G. The effect of fibre diameter on filtration and flux distribution—Relevance to submerged hollow fibre modules. J. Membr. Sci. 2001, 184, 221–231.
Drews A, Prieske H, Meyer E-L, Senger G and Kraume M, Advantageous and detrimental effects of air sparging in membrane filtration: Bubble movement, exerted shear and particle classification. Desalination 250: 1083-1086 (2010).
Du X, Qu F-S, Liang H, Li K, Bai L-M and Li G-B, Control of submerged hollow fiber membrane fouling caused by fine particles in photocatalytic membrane reactors using bubbly flow: Shear stress and particle forces analysis.Sep Purif Technol 172: 130-139 (2017).
Elham Radaei, Xuefei Liu, Keng Han Tng, Giuseppe Merendino, Francisco J. Trujillo, Pierre R. Berub, Greg Leslie.,2019. Numerical and experimental investigation of pulse bubble aeration with high packing density hollow-fibre MBRs. Water Research 160 (2019) 60-69.
Fang, H.H., &Shi, X. (2005). Pore fouling of microfiltration membranes by activated sludge. Journal of Membrane Science,264(1),161-166.
Fernandez, A., J. Lozier, and G. Daigger: “Investigating Membrane Bioreactor Operation for Domestic Wastewater Treatment: A Case Study,” Municipal Wastewater Treatment Symposium: Membrane Treatment Systems, proceedings, 73rd Annual Conference, Water Environment Federation, Anaheim, Ca, 2000.
Fulton, B.G.; Bérubé, P.R. Optimizing the sparging condition and membrane module spacing for a ZW500 submerged hollow fiber membrane system. Desalination Water Treat. 2012, 42, 8–16.
Jankhah S and Bérubé PR, Pulse bubble sparging for fouling control. Sep Purif Technol 134: 58-65 (2014).
Khor, S. L, et al.:” Biofouling Development and Rejection Enhancement in Long SRT MF Membrane Bioteactors,” Proc. Biochem. 42, pp.1641-1642,2007.
Lee YK, Won Y-J, Yoo JH, Ahn KH and Lee C-H, Flow analysis and fouling on the patterned membrane surface. J Membr Sci 427: 320-325 (2013).
Lewis WJT, Chew YMJ and Bird MR, The application of fluid dynamic gauging in characterising cake deposition during the cross-flow microfiltration of a yeast suspension. J Membr Sci 405–406: 113-122 (2012).
Li T, Nagaoka H, Itonaga T and Nakahara Y, Estimation of shear stress working on submerged vertically set hollow fibre membrane in MBRs. Journal of Water Supply: Research & Technology-AQUA 59 (2010).
Lin, C.-J.; Rao, P.; Shirazi, S. Effect of operating parameters on permeate flux decline caused by cake formation—A model study. Desalination 2005, 171, 95–105.
Lister VY, Lucas C, Gordon PW, Chew YMJ and Wilson DI, Pressure mode fluid dynamic gauging for studying cake build-up in cross-flow microfiltration. J Membr Sci 366: 304-313 (2011).
Liu X, Wang Y, Waite TD and Leslie G, Fluid Structure Interaction analysis of lateral fibre movement in submerged membrane reactors. J Membr Sci 504:240-250 (2016).
Martinelli L, Guigui C and Line A, Characterisation of hydrodynamics induced by air injection related to membrane fouling behaviour. Desalination 250:587-591 (2010).
Mattsson T, Lewis WJT, Chew YMJ and Bird MR, In situ investigation of soft cake fouling layers using fluid dynamic gauging. Food Bioprod Process 93:205-210 (2015).
Metcalf and Eddy, Inc.: Wastewater Engineering, McGraw-Hill Book Company, New York,2003.
Ndinisa NV, Fane AG, Wiley DE and Fletcher DF, Fouling Control in a Submerged Flat Sheet Membrane System: Part II — Two ‐ Phase Flow Characterization and CFD Simulations. Sep Sci Technol 41: 1411-1445 (2006).
Pasmore, M.; Todd, P.; Smith, S.; Baker, D.; Silverstein, J.; Coons, D.; Bowman, C.N. Effects of ultrafiltration membrane surface properties on pseudomonas aeruginosa biofilm initiation for the purpose of reducing biofouling. J. Membr. Sci. 2001, 194, 15–32.
Paul James Smith, Saravanamuth Vigneswaran, Huu Hao Ngo, Roger Ben-Aimb, Hung Nguyen., 2006. A new approach to backwash initiation in membrane systems. Journal of Membrane Science 278 (2006) 381–389.
Rana, D.; Matsuura, T. Surface modifications for antifouling membranes. Chem. Rev. 2010, 110, 2448–2471.
Rios N, Nopens I, De Schepper V, Jiang T, Verstraete W and Vanrolleghem P, A rheological model for activated sludge in a Side-Stream MBR. IWA, Harrogate,UK (2007).
Sun, D. D., C. T. Hay, and S. L. Khor: “Effects of Hydraulic Retention Time on Behavior of Start-up Submerged Membrane Bioreactor with Prolonged Sludge Reyention Time,” Desalination, 195, pp.209-225,2006.
Sun, D. D., et al. “Impact of Prolonged Sludge Retention Time on the Performance of a Submerged Membrance Bioreactor,” Desalination, 208, Elseveier, pp. 101-112,2007.
Tung, K.-L.; Damodar, H.-R.; Damodar, R.-A.; Tsai, J.-H.; Chen, C.-H.; You, S.-J.; Huang, M.-S. Imaging the effect of aeration on particle fouling mitigation in a submerged membrane filtration using a photointerrupt sensor array. Sep. Sci. Technol. 2017, 52, 228–239.
Wang, J.; Fane, A.G.; Chew, J.W. Effect of bubble characteristics on critical flux in the microfiltration of particulate foulants. J. Membr. Sci. 2017, 535, 279–293.
Wei P, Zhang K, Gao W, Kong L and Field R, CFD modeling of hydrodynamic characteristics of slug bubble flow in a flat sheet membrane bioreactor. J Membr Sci 445: 15-24 (2013).
Wibisono, Y.; Cornelissen, E.R.; Kemperman, A.J.B.; Van Der Meer, W.G.J.; Nijmeijer, K. Two-phase flow in membrane processes: A technology with a future. J. Membr. Sci. 2014, 453, 566–602.
Wicaksana, F.; Fane, A.G.; Chen, V. Fibre movement induced by bubbling using submerged hollow fibre membranes. J. Membr. Sci. 2006, 271, 186–195.
Xia, L.; Law, A.W.-K.; Fane, A.G. Hydrodynamic effects of air sparging on hollow fiber membranes in a bubble column reactor. Water Res. 2013, 47, 3762–3772.
Xing Du, Yuan Wang, Greg Leslie, Guibai Li, Heng Liang., 2017. Shear stress in a pressure-driven membrane system and its impact on membrane fouling from a hydrodynamic condition perspective: a review. J. Chemical technology and biotechnology. Sci. 54-57.
Ye D, Saadat-Sanei S and Bérubé PR, Pulse bubble sparging for the control of hydraulically reversible fouling in submerged hollow fiber membrane systems. Sep Purif Technol 123: 153-163 (2014).
Yeo APS, Law AWK and Fane AG, The relationship between performance of submerged hollow fibers and bubble-induced phenomena examined by particle image velocimetry. J Membr Sci 304: 125-137 (2007).
Yeom, I.-T.; Nah, Y.-M.; Ahn, K.-H. Treatment of household wastewater using an intermittently aerated membrane bioreactor. Desalination 1999, 124, 193–203.
Zhang, J., Chua, H.C., Zhou, J., &Fane, A. G (2006). Factors affecting the membrane performance in submerged membrane bioreactors. Journal of Membrane Science,284(1),54-66.
工業污染防治第 109 期(June 2009)