| 研究生: |
張家豪 Chia-Hao Chang |
|---|---|
| 論文名稱: |
皮膚材料性質測定之有限元素模擬 The Finite Element Analysis of the test of the material property of the skin |
| 指導教授: | 鄔蜀威 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生醫理工學院 - 生物醫學工程研究所 Graduate Institute of Biomedical Engineering |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 58 |
| 中文關鍵詞: | 有限元素法 、皮膚 、真皮 、壓痕試驗法 、吸力試驗法 |
| 外文關鍵詞: | skin, finite element analysis, dermis, indentation test, suction test |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究的目的在於利用有限元素分析模擬皮膚在不同受力狀態下的機械行為,進而找出能夠符合真實情況的材料性質範圍。本研究根據Hendriks與Pailler-Mattei兩者於文獻中所使用材料特性作為基本假設,其分別為E=35kPa與C10=9.4kPa、C11=82kPa。以此作為皮膚材料特性分別進行兩試驗法的有限元素分析。兩試驗法分別為:吸力試驗法與壓痕試驗法。模擬結果發現E=35KPa並不能有效的代表當皮膚在進行兩試驗法時的材料特性,在經過多次的嘗試之後,發現當E值的範圍在160~220KPa之間,能有效表現皮膚在兩種不同狀態下的機械行為。而利用二階Mooney-Rivlin 超彈性應變能量函數作為皮膚材料特性的假設僅能模擬吸力試驗法的機械行為,無法模擬皮膚於壓痕試驗法的機械行為。為此,進行修正重新嘗試之後,發現在C10不改變的前提下,C11=17.5~82KPa之間能近似地模擬皮膚於兩試驗法的機械行為。以上為本研究的初步結果,以此可以作為未來再次進行皮膚有限元素分析時的一個參考依據。
The aim of this study is to simulate the mechanical behaviors of skin under different stress levels with the use of Finite Element Analysis (FEA) and further, to find the region of material property. Therefore, two mechanical tests: suction and indentation test were conducted to create two different stress levels. In addition, Hendriks and Pailler-Mattei’s assumptions-E-35KPa, C10=9.4kPa, C11=82kPa were examined to find the possible parameter region. The result shows that in both tests, Pailler-Mattei’s assumption-=35kPa can sufficiently describe the mechanical behavior of skin only when E is between 160kPa and 220kPa.
Then, the second order Mooney-Revlin hyperelastic strain-energy assumptions: C10=9.4kPa, C11=82kPa were also analyzed to understand the skin material property. When FEA is applied, assumption only represent the mechanical behavior of skin in suction test, but not in the indentation test. Thus, more tests are run to find the region of C11. Without changing C1., this assumption can well illustrate the mechanical behavior of skin in both tests when C11=17.5~82kPa. These preliminary results of skin material property can be a further investigated by other scholars in the future.
[1] F.M.Hendriks et al. , A numerical-experimental method to characterize the non-linear mechanical behaviour of human skin, Skin Research and Technology, 9, p274-283, 2003
[2] C. Pailler-Mattei, S. Beca, H. Zahouani, In vivo measurements of the elastic mechanical properties of human skin by indentation tests, Medical Engineering & Physics, 30, 599–606, 2008
[3] M. Gniadecka and J. Serup. , Suction chamber method for measurement of skin mechanical properties: The Dermaflex. In: Serup, J. and Jemec, G. B. E. (eds. ) Handbook of Non-Invasive Methods and the skin. , Boca Raton, CRC Press, 1995.
[4] RB. King, Elastic analysis of some punch problems for a layered Medium, Int J Solids Struct, 23, 1657–64, 1987
[5] H. Gao, C. Chui, J. Lee, Elastic contact versus indentation modeling of multi-layered materials, Int J Solids Struct, 29, 2471–92, 1992
[6] S. Bec et al. , Improvements in the indentation method with a surface force apparatus, Philos Mag A, 74, 1061–72, 1996
[7] A. Rar, H. Song, GM. Pharr, Assessment of new relation for the elastic compliance of a film-substrate system, Mater Res Soc Symp proc , 695, 431–6, 2002
[8] A. Perriot, E. Barthel, Elastic contact to a coated half-space: effective elastic modulus and real penetration, J Mater Res, 19, 600–8, 2004
[9] S. Diridollou et al. , In vivo model of the mechanical properties of the human skin under suction, Skin Res Technol, 6, 214–21, 2000
[10] A. Delalleau et al. , Characterization of the mechanical properties of skin by inverse analysis combined with the indentation test, Journal of Biomechanics, 39 , 1603–1610, 2006
[11] H. V. Tran, In vivo characterization of the mechanical properties of human skin derived from MRI and indentation techniques, Computer Methods in Biomechanics and Biomedical Engineering, Vol. 10, No. 6 December 2007, 401–407
[12] R. Sanders, Torsional elasticity of human skin in vivo, Pflug Arch Eur J Phy , 342, 255–60, 1973
[13] E. Berardesca et al. , In vivo biophysical characterisation of skin physiological differences in races, Dermatologica, 182, 89–93, 1991
[14] T. Sugihara et al. , The extensibility in human skin: variation according to age and site, Br J Plast Surg, 44, 418–22, 1991
[15] CM. Moran, NL. Bush, JC. Bamber, Ultrasonic propagation properties of excised human skin, Ultrasound Med Biol, 21, 1177–90, 1995
[16] L. Pan, L. Zan, FS. Foster, Ultrasonic and viscoelastic properties of skin under transverse mechanical stress in vitro, Ultrasound Med Biol, 24, 995–7, 1998
[17] PG. Agache et al. , Mechanical properties and Young’s modulus of human skin in vivo, Arch Dermatol Res, 269, 127–33, 1980
[18] JF. Manschot, AJ. Manschot, The measurement and modelling of the mechanical properties of human skin in vivo. I. The measurement, J Biomech, 19, 511–5, 1986
[19] G.F. Odland, Structure of the skin. In: Goldsmith, L. A. (editor), Physiology, biochemistry, and molecular biology of the skin, Oxford University Press, Oxford, 1991.
[20] F. J. G. Ebling, R. A. J. Eady, and I. M. Leigh, Anatomy and organization of human skin. In: Champion, R. H. , Burrington, J. L. , Ebling, F. J. G. (editors), Textbook of Dermatology, 5th edition. , Blackwell Scientific Publications, New York, 1992.
[21] W. Montagna and P. F. Parakkal, The structure and function of skin, Academic Press, New York, 1974.
[22] F. Hendriks, Mechanical behavior of human skin in vivo, Literature review , 2001
[23] A. C. Guyton, Anatomy and Physiology, Saunders College Publishing, New York, 1985.
[24]J. L. Burton and W. J. Cunliffe, Subcutaneous Fat. In: Champion, R. H. Burrington, J. L. Ebling, F. J. G. (editors), Textbook of Dermatology, 5th edition, Blackwell Scientific Publications, New York, 1992
[25] P. Eksner et al. , Skin Biomechanics, Boca Raton: CRCPress, 2000.
[26]A. O. Barel, W. Courage, and P. Clarys, Suction method for measurement of skin mechanical properties: the Cutometer. In: Serup, J. and Jemec, G. B. E. (eds.), Handbook of Non-Invasive Methods and the skin, Boca Raton, CRC Press, 1995.
[27]W. Maurel et al. , Biomechanical Models for Soft Tissue Simulation, Esprit Basic Research Series, Springer-Verlag, Berlin, 1998
[28] K. Langer, On the anatomy and physiology of the skin. I.Skin tension, Brit J Plast Surg, 31, 93–106, 1978
[29] D. Bader, P. Bader, Mechanical characteristics of skin and underlying tissues in vivo, Biomaterials , 4, 305–8, 1983
[30] C. Pailler-Mattei, H. Zahouani, Study of adhesion forces and mechanical properties of human skin in vivo, J Adhes Sci Technol, 18, 1739–58, 2004
[31] A. Dellaleau et al. , Characterization of the mechanical properties of skin by inverse analysis combined with the indentation test, J Biomech, 39, 1603–10, 2005
[32]L. A. M. de Jong and L. F. A. Douven, Pre-tension and anisotropy in skin. Nat. Lab. Unclassified Report NL-UR 023/95. Philips Research Laboratories, 1996.
[33]G. L. Wilkes, I. A. Brown, and R. H. Wildnauer, The biomechanical properties of skin, Critical Reviews in Bioengineering, pages 453–495, 1973.