| 研究生: |
盧柏宏 Bo-hong Lu |
|---|---|
| 論文名稱: |
訊號和噪訊的權重範數和-估計Tikhonov正則化參數 Estimation of Tikhonov Regularization Parameter by Weighted Sum of Norms of MNE and Noises |
| 指導教授: |
王敏生
M.S.Wang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 47 |
| 中文關鍵詞: | 訊號和噪訊的權重範數和 、Tikhonov正則化參數 、最小範數源迭代法 |
| 外文關鍵詞: | SIMN, Tikhonov regularization parameter, Weighted Sum of Norms of MNE and Noises |
| 相關次數: | 點閱:15 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文探討用「最小範數源迭代法」(SIMN)做腦磁圖(MEG)的源定位時,其中的Tikhonov正則化參數(Tikhonov regularization parameter)對定位結果的影響,並且提出一個估計Tikhonov正則化參數(Tikhonov regularization parameter)的方法。數值模擬顯示,最佳定位的Tikhonov正則化參數值和訊號-噪訊比(SNR)有關。因此我們提出了一種方法將訊號與噪訊的最小範數估計解(minimum norm estimation, MNE)分別取範數的平方,再取權重和,此權重和對參數的變化會有一個全域極小值。在適當的權重下,權重和極小的參數的定位結果與其他各種方法估算參數的定位結果比較,我們的方法在SNR越小的情況下,定位成功率相對地越好。
In this thesis, the dependence of the MEG source localization accuracies of the inverse algorithm Source Iteration of Minimum Norm(SIMN) on Tikhonov regularization parameter λ is studied and a method is proposed to estimate the Tikhonov regularization parameter λ. Numerical simulations show that the λ values that optimize the localization accuracies of SIMN depond on the Signal-to-Noise Ratio(SNR). To obtain a good estimate of λ a weighted sum of square of norms of minimum norm estimates of source amplitudes and noises is considered. It is shown numerically that, by a proper choice of the weighting factor, the λ value corresponding to the minimum of the weighted sum results in localization accuracy better than that using the λ value estimated from other methods.
﹝1﹞Matti Hämäläinen, Riita Hari, Risto J.Ilmoniemi, Jukka Knuutila,
and Olli V.Lounasmaa, “Magnetoencephalography-theory, instrumentation, and applications to noninvasive studies of the working human brain”, Rev. Mod.Phys., 65, 413-497, 1993.
﹝2﹞Wei-Kuang Liang and M. S. Wang, “Source reconstruction of brain
electromagnetic fields─Source iteration of minimum norm (SIMN)’’, NeuroImage, 47, 1301-1311, 2009.
﹝3﹞Hansen P.C. and O’Leary D.P., “The use of the L-curve in the
regularization of discrete ill-posed problems”, SIAM J. SCI.
Comput., 14, 1487-1503, 1993.
﹝4﹞S. Baillet, J. C. Mosher, & Richard M. Leahy. “Electromagnetic brain
mapping”, Signal Processing Magazine, IEEE, 18, 14-30, 2001.
﹝5﹞Geselowitz, D., “On the magnetic field generated outside an
inhomogeneous volume conductor by internal current sources”,
IEEE Trans. Magn., 6, 346-347.
﹝6﹞Grave de Peralta-Menendez R., Gonzalez-Andino, S., “A
critical analysis of linear inverse solutions to the neuroelectromagnetic inverse problem”. IEEE Trans. Biomed. Eng., 45, 440–448, 1998.
﹝7﹞Fuchs M., Wagner M., Kohler, T. and Wischmann, H.A.,
“Linear and nonlinear current density reconstructions”, J. Clin.
Neurophysiol., 16, 267–295, 1999.
﹝8﹞Aine C.J., “A conceptual overview and critique of functional
neuroimaging techniques in humans—I: MRI/fMRI and PET”, Crit. Rev. Neurobiol., 9, 229–309, 1995.
﹝9﹞Grave de Peralta-Menendez R., Hauk O., Gonzalez-Andino S.,
Vogt H., and Michel, C., “Linear inverse solutions with optimal
resolution kernels applied to electromagnetic tomography”. NeuroImage, 5, 454-467, 1997.
﹝10﹞Brainstorm網站。2011年7月24日,取自
http://neuroimage.usc.edu/brainstorm/。
﹝11﹞Mosher J.C., Leahy R.M. & Lewis P.S., “EEG and MEG: Forward
Solutions for inverse methods”, IEEE Trans. Biomed. Eng., 46, 245–259, 1999.
﹝12﹞Hämäläinen M.S. and Sarvas J., “Realistic conductor geometry model
of the human head for interpretation of neuromagnetic data”, IEEE
Trans. Biomed. Eng., 36, 165-171, 1989.
﹝13﹞杜美嫻,“Source Localization of MEG”,國立中央大學,碩士
論文,民國97年。
﹝14﹞Lin F.-H., Belliveau J.W., Dale A.M. and Hämäläinen M.S., “Distributed
current estimates using cortical orientation constraints”, Hum. Brain.
Mapp. , 27, 1-31, 2006.