| 研究生: |
林昱衡 Yu-Heng Lin |
|---|---|
| 論文名稱: |
以臭氧催化氧化與電漿催化系統氧化一氧化氮之效率探討 |
| 指導教授: |
張木彬
Moo-Been Chang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程研究所 Graduate Institute of Environmental Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 91 |
| 中文關鍵詞: | 一氧化氮 、臭氧 、電漿催化 、NO深度氧化 、臭氧催化氧化 |
| 外文關鍵詞: | nitric oxide, ozone, plasma catalysis, NO deep oxidation, ozone catalytic oxidation |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究致力於開發低溫高效之一氧化氮氧化技術,並比較電漿催化與臭氧催化氧化兩種控制技術,分別針對流量、反應溫度、氣流組成及觸媒穩定性進行測試,並探討各操作參數對NO氧化效率之影響。本研究使用兩種錳金屬前驅物浸漬於TiO2 (P25)以製備FeMn/TiO2觸媒,分別為硝酸錳與醋酸錳,並比較兩者對觸媒催化活性之影響。電漿催化系統之操作條件為270 ppm NO、氧含量20%、氣體流量1.2 L/min、空間速度15,000 h-1,結果顯示使用FeMn/TiO2 (MA)觸媒展現較佳之NO氧化效率,於SED =520 J/L時NO氧化效率達70±1.2%,然而氣流中含250 ppm SO2時,NO氧化效率下降至53±1.5%。使用臭氧機生成臭氧,於室溫下進行NO深度氧化,系統之操作條件為270 ppm NO、氣體流量2.5 L/min,O3/NO =1時,NO氧化效率達100%,生成212±5.0 ppm NO2,當O3/NO¬ =1.9時可將NO2完全氧化,生成97±3.1 ppm N2O5。臭氧催化氧化系統以FeMn/TiO2 (MA)為觸媒,溫度上升可促進N2O5生成,於反應溫度100℃、空間速度15,000 h-1,O3/NO =1.7時,N2O5濃度由60±4.9 ppm上升至101±5.6 ppm。觸媒之物化特性分析結果顯示FeMn/TiO2 (MA)觸媒具有較高之比表面積及孔體積,分別為47.4 m2/g及0.34 cm3/g,且此觸媒具有高比率之吸附氧(Oα)及Mn3+物種,可提升觸媒之催化活性,進而促進NO之氧化效率。
This study aims to develop a low-temperature, and high-efficiency technology for the oxidation of nitrogen oxide (NOx). Moreover, comparison of the catalyst for plasma catalysis and ozone catalytic oxidation (OZCO) is conducted. FeMn/TiO2 catalysts were prepared through the impregnation of manganese acetate (MA) or manganese nitrate (MN) precursors on TiO2 (P25) and tested for the oxidation of NO. Experimental results indicate that FeMn/TiO2 (MA) catalyst shows higher activities for NO oxidation if compared with FeMn/TiO2 (MN) catalyst. As the inlet NO concentration is controlled at 270 ppm, the NO oxidation efficiency could achieve 70±1.2% at SED =520 J/L. However, existence of SO2 lower the efficiency of NO oxidation. The NO oxidation efficiency dropped to 53±1.5%. The deep oxidation of NO by ozone could achieve 100% efficiency at O3/NO =1 and room temperature, NO2 concentration is measured as 212±5.0 ppm. NO2 is almost completely oxidized at O3/NO =1.9, producing 97±3.1 ppm N2O5. The concentration of N2O5 increased to 101±5.6 ppm as the temperature was increased to 100℃ at O3/NO =1.7 by the OZCO method. Characterization of catalyst indicates that FeMn/TiO2 (MA) catalyst has a higher BET specific surface area and pore volume, which are 47.4 m2/g and 0.34 cm3/g, respectively. Moreover, this catalyst has good oxidation property to promote NO oxidation due to higher Oα/Oβ and Mn3+/Mn4+ ratio.
An, J., Shang, K., Lu, N., Hong, Y., Jiang, Y., Li, J., & Wu, Y. (2014). Performance of dielectric barrier discharge reactors on elemental mercury oxidation in the coal-fired flue gas. Plasma Science and Technology, 16(2), 155.
Anaghizi, S. J., Talebizadeh, P., Rahimzadeh, H., & Ghomi, H. (2015). The configuration effects of electrode on the performance of dielectric barrier discharge reactor for NOx removal. IEEE transactions on plasma science, 43(6), 1944-1953.
Boningari, T., Ettireddy, P. R., Somogyvari, A., Liu, Y., Vorontsov, A., McDonald, C. A., & Smirniotis, P. G. (2015). Influence of elevated surface texture hydrated titania on Ce-doped Mn/TiO2 catalysts for the low-temperature SCR of NO under oxygen-rich conditions. Journal of Catalysis, 325, 145-155.
Brogren, C., Karlsson, H. T., & Bjerle, I. (1997). Absorption of NO in an alkaline solution of KMnO4. Chemical Engineering & Technology, 20(6), 396-402.
Byun, Y., Koh, D. J., Shin, D. N., Cho, M., & Namkung, W. (2011). Polarity effect of pulsed corona discharge for the oxidation of gaseous elemental mercury. Chemosphere, 84(9), 1285-1289.
Chang, M. B., Kushner, M. J., & Rood, M. J. (1992). Removal of SO2 and the simultaneous removal of SO2 and NO from simulated flue-gas streams using dielectric barrier discharge plasmas. Plasma Chemistry and Plasma Processing, 12(4), 565-580.
Chen, H. L., Lee, H. M., & Chang, M. B. (2006). Enhancement of energy yield for ozone production via packed-bed reactors. Ozone: Science & Engineering, 28(2), 111-118.
Chen, H. L., Lee, H. M., Chen, S. H., & Chang, M. B. (2008). Review of packed-bed plasma reactor for ozone generation and air pollution control. Industrial & Engineering Chemistry Research, 47(7), 2122-2130.
Chen, H. L., Lee, H. M., Chen, S. H., Chang, M. B., Yu, S. J., & Li, S. N. (2009). Removal of volatile organic compounds by single-stage and two-stage plasma catalysis systems: A review of the performance enhancement mechanisms, current status, and suitable applications. Environ Sci Technol, 43(7), 2216-2227.
Chen, R., Zhang, T., Guo, Y., Wang, J., Wei, J., & Yu, Q. (2021). Recent advances in simultaneous removal of SO2 and NOx from exhaust gases: Removal process, mechanism and kinetics. Chemical Engineering Journal, 420.
Chen, S., Wang, T., Wang, H., & Wu, Z. (2019). Insights into the reaction pathways and mechanism of NO removal by SDBD plasma via FTIR measurements. Fuel Processing Technology, 186, 125-136.
Cui, S., Zhong, Z., Liao, Y., Qi, L., & Fu, D. (2019). Simultaneous removal of NO and SO2 via an integrated system of nonthermal plasma combined with catalytic oxidation and wet electrostatic precipitator. Energy & Fuels, 33(10), 10078-10089.
Dinh, M. N., Giraudon, J. M., Vandenbroucke, A. M., Morent, R., De Geyter, N., & Lamonier, J. F. (2015). Post plasma-catalysis for total oxidation of trichloroethylene over Ce–Mn based oxides synthesized by a modified “redox-precipitation route”. Applied Catalysis B: Environmental, 172, 65-72.
Guo, R. T., Hao, J. K., Pan, W. G., & Yu, Y. L. (2015). Liquid phase oxidation and absorption of NO from flue gas: A review. Separation Science and Technology, 50(2), 310-321.
Huang, W. D., Ren, T. T., & Xia, W. D. (2007). Ozone generation by hybrid discharge combined with catalysis. Ozone-Science & Engineering, 29(2), 107-112.
Jõgi, I., Levoll, E., & Raud, J. (2016a). Plasma oxidation of NO in O2 N2 mixtures: The importance of back reaction. Chemical Engineering Journal, 301, 149-157.
Jõgi, I., Erme, K., Raud, J., & Laan, M. (2016b). Oxidation of NO by ozone in the presence of TiO2 catalyst. Fuel, 173, 45-51.
Jõgi, I., Erme, K., Levoll, E., Raud, J., & Stamate, E. (2018). Plasma and catalyst for the oxidation of NOx. Plasma Sources Science and Technology, 27(3).
Ji, R., Wang, J., Xu, W., Liu, X., Zhu, T., Yan, C., & Song, J. (2018). Study on the key factors of NO oxidation using O3: The oxidation product composition and oxidation selectivity. Industrial & Engineering Chemistry Research, 57(43), 14440-14447.
Jia, J., Zhang, P., & Chen, L. (2016). Catalytic decomposition of gaseous ozone over manganese dioxides with different crystal structures. Applied Catalysis B: Environmental, 189, 210-218.
Kawamura, K., Hirasawa, A., Aoki, S., Kimura, H., Fujii, T., Mizutani, S., Higo, T., Ishikawa, R., Adachi, K., & Hosoki, S. (1979). Pilot plant experiment of NOx and SO2 removal from exhaust gases by electron beam irradiation. Radiation Physics and Chemistry (1977), 13(1), 5-12.
Kim, H. H., Prieto, G., Takashima, K., Katsura, S., & Mizuno, A. (2002). Performance evaluation of discharge plasma process for gaseous pollutant removal. Journal of Electrostatics, 55(1), 25-41.
Kim, H. H., Wu, C. X., Kinoshita, Y., Takashima, K., Katsura, S., & Mizuno, A. (2001). The influence of reaction conditions on SO2 oxidation in a discharge plasma reactor. IEEE Transactions on Industry Applications, 37(2), 480-487.
Kim, J. W., Lee, W. G., Hwang, I. S., Lee, J. Y., & Han, C. (2015). Recovery of tungsten from spent selective catalytic reduction catalysts by pressure leaching. Journal of Industrial and Engineering Chemistry, 28, 73-77.
Ko, J. H., Park, S. H., Jeon, J. K., Kim, S. S., Kim, S. C., Kim, J. M., Chang, D., & Park, Y. K. (2012). Low temperature selective catalytic reduction of NO with NH3 over Mn supported on Ce0.65Zr0.35O2 prepared by supercritical method: Effect of Mn precursors on NO reduction. Catalysis Today, 185(1), 290-295.
Li, X., Zhang, S., Jia, Y., Liu, X., & Zhong, Q. (2012). Selective catalytic oxidation of NO with O2 over Ce-doped MnOx/TiO2 catalysts. Journal of Natural Gas Chemistry, 21(1), 17-24.
Lin, F., Wang, Z., Ma, Q., He, Y., Whiddon, R., Zhu, Y., & Liu, J. (2016a). N2O5 formation mechanism during the ozone-based low-temperature oxidation deNOx process. Energy & Fuels, 30(6), 5101-5107.
Lin, F., Wang, Z., Ma, Q., Yang, Y., Whiddon, R., Zhu, Y., & Cen, K. (2016b). Catalytic deep oxidation of NO by ozone over MnOx loaded spherical alumina catalyst. Applied Catalysis B: Environmental, 198, 100-111.
Lin, F., Wang, Z., Shao, J., Yuan, D., He, Y., Zhu, Y., & Cen, K. (2017). Promotional effect of spherical alumina loading with manganese-based bimetallic oxides on nitric-oxide deep oxidation by ozone. Chinese Journal of Catalysis, 38(7), 1270-1280.
Lin, F., Wang, Z., Zhang, Z., He, Y., Zhu, Y., Shao, J., Yuan, D., Chen, G., & Cen, K. (2020). Flue gas treatment with ozone oxidation: An overview on NO, organic pollutants, and mercury. Chemical Engineering Journal, 382.
Lin, H., Gao, X., Luo, Z., Cen, K., Pei, M., & Huang, Z. (2004). Removal of NOx from wet flue gas by corona discharge. Fuel, 83(9), 1251-1255.
Loiland, J. A., & Lobo, R. F. (2014). Low temperature catalytic NO oxidation over microporous materials. Journal of Catalysis, 311, 412-423.
Ma, J., Wang, C., & He, H. (2017a). Transition metal doped cryptomelane-type manganese oxide catalysts for ozone decomposition. Applied Catalysis B: Environmental, 201, 503-510.
Ma, S. M., Zhao, Y. C., Yang, J. P., Zhang, S. B., Zhang, J. Y., & Zheng, C. G. (2017b). Research progress of pollutants removal from coal-fired flue gas using non-thermal plasma. Renewable & Sustainable Energy Reviews, 67, 791-810.
Miller, B. G. (2017). Formation and control of nitrogen oxides. Clean Coal Engineering Technology (pp. 507-538).
Mok, Y. S., Lee, H.-J., Dors, M., & Mizeraczyk, J. (2005). Improvement in selective catalytic reduction of nitrogen oxides by using dielectric barrier discharge. Chemical Engineering Journal, 110(1-3), 79-85.
Mok, Y. S., Lee, H. W., Hyun, Y. J., Ham, S. W., Kim, J. H., & Nam, I. S. (2001). Removal of NO and SO2 by pulsed corona discharge process. Korean Journal of Chemical Engineering, 18(3), 308-316.
Mok, Y. S., & Nam, I. S. (2002). Modeling of pulsed corona discharge process for the removal of nitric oxide and sulfur dioxide. Chemical Engineering Journal, 85(1), 87-97.
Moon, J. D., & Geum, S. T. (1998). Discharge and ozone generation characteristics of a ferroelectric-ball/mica-sheet barrier. IEEE Transactions on Industry Applications, 34(6), 1206-1211.
Nawrocki, J., & Kasprzyk-Hordern, B. (2010). The efficiency and mechanisms of catalytic ozonation. Applied Catalysis B: Environmental, 99(1-2), 27-42.
Normann, F., Andersson, K., Leckner, B., & Johnsson, F. (2009). Emission control of nitrogen oxides in the oxy-fuel process. Progress in Energy and Combustion Science, 35(5), 385-397.
Park, E., Chin, S., Jeong, J., & Jurng, J. (2012). Low-temperature NO oxidation over Mn/TiO2 nanocomposite synthesized by chemical vapor condensation: Effects of Mn precursor on the surface Mn species. Microporous and Mesoporous Materials, 163, 96-101.
Park, J. Y., Tomicic, I., Round, G. F., & Chang, J. S. (1999). Simultaneous removal of NOx and SO2 from NO-SO2-CO2-N2-O2 gas mixtures by corona radical shower systems. Journal of Physics D-Applied Physics, 32(9), 1006-1011.
Pekarek, S. (2012). Experimental study of surface dielectric barrier discharge in air and its ozone production. Journal of Physics D: Applied Physics, 45(7).
SchmidtSzalowski, K. (1996). Catalytic properties of silica packings under ozone synthesis conditions. Ozone: Science & Engineering, 18(1), 41-56.
Schmitt, K. L., Murray, D. M., & Dibble, T. S. (2009). Towards a consistent chemical kinetic model of electron beam irradiation of humid air. Plasma Chemistry and Plasma Processing, 29(5), 347-362.
Shen, B., Zhu, S., Zhang, X., Chi, G., Patel, D., Si, M., & Wu, C. (2018). Simultaneous removal of NO and Hg0 using Fe and Co co-doped Mn-Ce/TiO2 catalysts. Fuel, 224, 241-249.
Sun, C., Zhao, N., Zhuang, Z., Wang, H., Liu, Y., Weng, X., & Wu, Z. (2014). Mechanisms and reaction pathways for simultaneous oxidation of NOx and SO2 by ozone determined by in situ IR measurements. Journal of Hazardous Materials, 274, 376-383.
Wang, A., & Hou, Z. (2021). Reducing energy consumption in plasma NO conversion utilizing plasma aerodynamic effect. Chemical Engineering Journal, 408.
Wang, B., Song, Z., & Sun, L. (2021). A review: Comparison of multi-air-pollutant removal by advanced oxidation processes – Industrial implementation for catalytic oxidation processes. Chemical Engineering Journal, 409.
Wang, D., Cheng, J., Wang, B., Lou, J., Li, Y., Li, X., Li, Z., Liu, X., Meng, Q., Gao, P., & An, J. (2019a). Plasma-catalytic high-efficiency oxidation of NO over Co-Mn/Ti catalysts using surface dielectric barrier discharge plasma. Vacuum, 167, 249-254.
Wang, H., Zhuang, Z., Sun, C., Zhao, N., Liu, Y., & Wu, Z. (2016). Numerical evaluation of the effectiveness of NO2 and N2O5 generation during the NO ozonation process. Journal of Environmental Sciences, 41, 51-58.
Wang, L., Cheng, X., Wang, Z., Sun, R., Zhao, G., Feng, T., & Ma, C. (2019b). Reaction of NO + CO over Ce-modified Cu–FeOx catalysts at low temperature. Energy & Fuels, 33(11), 11688-11704.
Wang, M., Zhu, T., & Wang, H. (2010). Oxidation and removal of NO from flue gas by DC corona discharge combined with alkaline absorption. IEEE transactions on plasma science, 39(2), 704-710.
Wang, T., Sun, B. M., Xiao, H. P., Zeng, J. Y., Duan, E. P., Xin, J., & Li, C. (2012). Effect of reactor structure in DBD for nonthermal plasma processing of NO in N2 at ambient temperature. Plasma Chemistry and Plasma Processing, 32(6), 1189-1201.
Wang, X., Zhou, J., Jiang, C., Wang, J., Gui, K., & Thomas, H. R. (2019c). Precursor and dispersion effects of active species on the activity of Mn-Ce-Ti catalysts for NO abatement. Korean Journal of Chemical Engineering, 36(12), 1991-1999.
Wang, Z., Zhou, J., Zhu, Y., Wen, Z., Liu, J., & Cen, K. (2007). Simultaneous removal of NOx, SO2 and Hg in nitrogen flow in a narrow reactor by ozone injection: Experimental results. Fuel Processing Technology, 88(8), 817-823.
Wu, Z., Tang, N., Xiao, L., Liu, Y., & Wang, H. (2010). MnOx/TiO2 composite nanoxides synthesized by deposition-precipitation method as a superior catalyst for NO oxidation. Journal of Colloid and Interface Science, 352(1), 143-148.
Xu, F., Luo, Z., Cao, W., Wang, P., Wei, B., Gao, X., Fang, M., & Cen, K. (2009). Simultaneous oxidation of NO, SO2 and Hg0 from flue gas by pulsed corona discharge. Journal of Environmental Sciences, 21(3), 328-332.
Yin, S. E., Sun, B. M., Gao, X. D., & Xiao, H. P. (2009). The effect of oxygen and water vapor on nitric oxide conversion with a dielectric barrier discharge reactor. Plasma Chemistry and Plasma Processing, 29(6), 421-431.
Zeng, X., Huo, X., Zhu, T., Hong, X., & Sun, Y. (2016). Catalytic oxidation of NO over MnOx-CeO2 and MnOx-TiO2 catalysts. Molecules, 21(11).
Zhang, M., Li, C., Qu, L., Fu, M., Zeng, G., Fan, C., Ma, J., & Zhan, F. (2014). Catalytic oxidation of NO with O2 over FeMnOx/TiO2: Effect of iron and manganese oxides loading sequences and the catalytic mechanism study. Applied Surface Science, 300, 58-65.
Zhao, W., Zhang, S., Ding, J., Deng, Z., Guo, L., & Zhong, Q. (2016). Enhanced catalytic ozonation for NOx removal with CuFe2O4 nanoparticles and mechanism analysis. Journal of Molecular Catalysis A: Chemical, 424, 153-161.
行政院環境保護署空氣污染排放清冊[TEDS 11.0版] (2021)。
曾志富、郭麗雯、朱志忠、謝智林 (2019)。火力電廠SCR脫硝觸媒性能檢測與品質管理,台電工程月刊,頁91-109。
李灝銘,以低溫電漿去除揮發性有機物之研究,國立中央大學環境工程研究所博士論文,台灣 (2001)。
彭瀚萱,NSR觸媒結合電漿技術去除NOx之研究,國立中央大學環境工程研究所碩士論文,台灣 (2015)。