跳到主要內容

簡易檢索 / 詳目顯示

研究生: 王璽傑
Si Jie Wang
論文名稱: 結合時序多工與空間鄰近編碼的結構光三維 掃描系統
A Structured Light 3D Scanner with the Combining of Temporal Multiplexing and Spatial Neighborhood Coding
指導教授: 陳慶瀚
Ching-han Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 資訊工程學系
Department of Computer Science & Information Engineering
論文出版年: 2015
畢業學年度: 104
語文別: 中文
論文頁數: 107
中文關鍵詞: 結構光系統三維掃描時序多工空間鄰近
外文關鍵詞: Structured Light system, 3D Scanner, Temporal Multiplexing, Spatial Neighborhood
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 針對同時具有銳利邊緣和平滑曲面的3D物體,傳統的結構光3D掃描的編碼方法通常不具有良好的適應性。本研究結合了空間鄰近與時序多工編碼,藉由時序相位與De Bruijn序列的整合,實現了一個高性能的3D掃描系統。此一系統具有較高的3D掃描精確度和執行效率。實驗結果顯示,對於複雜物體表面的3D掃描,我們的方法所得到的3D模型不僅輪廓精密度較高,而且當物體表面同時存在銳利與平滑曲面、陰影及反射所造成的表面雜訊,本系統均可順利重建三維輪廓,表現出良好的適應性。


    The coding method adopted in a conventional structured light 3D scanner generally exhibits unfavorable adaptability when processing 3D objects with sharp edges and smooth curved surfaces. In this study, a high-performance 3D scanner system was developed by combining temporal multiplexing and spatial neighborhood coding methods and integrating timing phase with De Bruijn sequences. The proposed system can accurately and efficiently execute 3D scanning. The experimental results revealed that when scanning the surface of a complex object, the proposed system produced a 3D model with highly precise profiles. When scanning the surface of objects that features sharp edges and smooth curved surfaces and noise signals caused by shadows and reflections, the system proposed in this study can effectively rebuild the 3D profile of the object and thus demonstrates excellent adaptability.

    摘 要 ii ABSTRACT iii 目錄 iv 圖目錄 vii 表目錄 xiii 第一章、緒論 1 1.1 研究動機 1 1.2 研究目的 3 1.3 論文架構 3 第二章、三維掃描測量技術回顧 4 2.1 雙目立體視覺原理 4 2.1.1 影像前處理 4 2.1.2 立體匹配與視差 10 2.2 飛行時間原理 11 2.2.1 飛行時間型態 11 2.2.2 三角測量技術 12 2.2.3 光脈衝折返之深度距離 14 2.3 空間鄰近編碼之結構光 15 2.4 時序多工編碼之結構光 17 2.4.1 遞迴結構化圖案方法 17 第三章、結構光3D取像系統 20 3.1 結構光型態 20 3.2 結構光編解碼 21 3.2.1 相位編碼 21 3.2.2 相位解碼 22 3.2.3 相位間斷(phase discontinuous) 24 3.3 空間鄰近編碼結合 25 3.3.1 De Bruijn編解碼 25 3.3.2 邊緣序列 26 3.3.3 色彩識別(Color identification) 26 3.3.4 匹配(Matching) 27 3.4 系統流程 28 3.5 結構光3D取像系統設計 29 3.6 結構光3D取像系統離散事件建模 37 第四章、實驗 49 4.1 實驗環境 49 4.2 攝影機與投影機校正參數 51 4.3 探討三維掃描整合之結構光3D取像系統 53 4.3.1 傳統二進制格雷碼 53 4.3.2 空間鄰近編碼 58 4.3.3 結合結構光特點之整合 59 4.4 結構光3D取像系統驗證 60 4.4.1 相位編碼程序 61 4.4.2 相位解碼程序 64 4.4.3 相位間斷處理程序 65 4.4.4 相位疊合程序 70 4.4.5 相位解開程序 71 4.4.6 驗證結果 77 4.5 實驗與數據相較評估 80 第五章、結論 87 未來方向 88 參考文獻 89

    [1] T. Várady, R. R. Martin, and J. Cox, "Reverse engineering of geometric models—an introduction," Computer-Aided Design, vol. 29, pp. 255-268, 4/ 1997.
    [2] D. Marr and T. Poggio, "A Computational Theory of Human Stereo Vision," Proceedings of the Royal Society of London B: Biological Sciences, vol. 204, pp. 301-328, 1979.
    [3] I. Moring, T. Heikkinen, R. Myllyla, and A. Kilpela, "Acquisition Of Three-Dimensional Image Data By A Scanning Laser Range Finder," Optical Engineering, vol. 28, pp. 288897, 1989.
    [4] J. Salvi, J. Pages, and J. Batlle, "Pattern codification strategies in structured light systems," Pattern Recognition, vol. 37, pp. 827-849, 2004.
    [5] J. Salvi, S. Fernandez, T. Pribanic, and X. Llado, "A state of the art in structured light patterns for surface profilometry," Pattern Recognition, vol. 43, pp. 2666-2680, 8/ 2010.
    [6] Z. Peng and N. Guo-Qiang, "Simultaneous perimeter measurement for 3D object with a binocular stereo vision measurement system," Optics and Lasers in Engineering, vol. 48, pp. 505-511, 4/ 2010.
    [7] D. Scharstein and R. Szeliski, "A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms," International Journal of Computer Vision, vol. 47, pp. 7-42, 04/01 2002.
    [8] R. Lange and P. Seitz, "Solid-state time-of-flight range camera," Quantum Electronics, IEEE Journal of, vol. 37, pp. 390-397, 2001.
    [9] S. Zhang, "Recent progresses on real-time 3D shape measurement using digital fringe projection techniques," Optics and Lasers in Engineering, vol. 48, pp. 149-158, 2/ 2010.
    [10] C. Wust and D. Capson, "Surface profile measurement using color fringe projection," Machine Vision and Applications, vol. 4, pp. 193-203, 06/01 1991.
    [11] B. Carrihill and R. Hummel, "Experiments with the intensity ratio depth sensor," Computer Vision, Graphics, and Image Processing, vol. 32, pp. 337-358, 12/01 1985.
    [12] J. Salvi, J. Batlle, and E. Mouaddib, "A robust-coded pattern projection for dynamic 3D scene measurement," Pattern Recognition Letters, vol. 19, pp. 1055-1065, 9/ 1998.
    [13] R. A. Morano, C. Ozturk, R. Conn, S. Dubin, S. Zietz, and J. Nissano, "Structured light using pseudorandom codes," Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 20, pp. 322-327, 1998.
    [14] J. Pagès, J. Salvi, C. Collewet, and J. Forest, "Optimised De Bruijn patterns for one-shot shape acquisition," Image and Vision Computing, vol. 23, pp. 707-720, 8/1/ 2005.
    [15] J. L. Posdamer and M. D. Altschuler, "Surface measurement by space-encoded projected beam systems," Computer Graphics and Image Processing, vol. 18, pp. 1-17, 01/01 1982.
    [16] K. Hibino, B. F. Oreb, D. I. Farrant, and K. G. Larkin, "Phase-shifting algorithms for nonlinear and spatially nonuniform phase shifts," Journal of the Optical Society of America A, vol. 14, pp. 918-930, 04/01 1997.
    [17] M. Takeda and K. Mutoh, "Fourier transform profilometry for the automatic measurement of 3-D object shapes," Applied Optics, vol. 22, pp. 3977-3982, 12/15 1983.
    [18] H. Bingyao and T. Ying, "Fast 3D reconstruction using one-shot spatial structured light," in Systems, Man and Cybernetics (SMC), 2014 IEEE International Conference on, pp. 531-536 , 2014.
    [19] G. Sansoni, S. Corini, S. Lazzari, R. Rodella, and F. Docchio, "Three-dimensional imaging based on Gray-code light projection: characterization of the measuring algorithm and development of a measuring system for industrial applications," Applied Optics, vol. 36, pp. 4463-4472, 07/01 1997.
    [20] S. Zhang and S.-T. Yau, "Generic nonsinusoidal phase error correction for three-dimensional shape measurement using a digital video projector," Applied Optics, vol. 46, pp. 36-43, 01/01 2007.
    [21] Global 3D Scanning Market. Available: http://www.technavio.com/blog/top-12-3d-scanner-manufacturers
    [22] M. Bueno, L. Díaz-Vilariño, J. Martínez-Sánchez, H. González-Jorge, H. Lorenzo, and P. Arias, "Metrological evaluation of KinectFusion and its comparison with Microsoft Kinect sensor," Measurement, vol. 73, pp. 137-145, 9/ 2015.
    [23] Z. Zhengyou, "Flexible camera calibration by viewing a plane from unknown orientations," in Computer Vision, 1999. The Proceedings of the Seventh IEEE International Conference on, vol.1, pp. 666-673, 1999.
    [24] S. Jian, Z. Nan-Ning, and S. Heung-Yeung, "Stereo matching using belief propagation," Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 25, pp. 787-800, 2003.
    [25] Y. Ohta and T. Kanade, "Stereo by Intra- and Inter-Scanline Search Using Dynamic Programming," Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. PAMI-7, pp. 139-154, 1985.
    [26] J. M. Huntley and H. Saldner, "Temporal phase-unwrapping algorithm for automated interferogram analysis," Applied Optics, vol. 32, pp. 3047-3052, 06/10 1993.
    [27] R. S. Aguilar-Savén, "Business process modelling: Review and framework," International Journal of Production Economics, vol. 90, pp. 129-149, 7/28/ 2004.
    [28] Z. Zhengyou, "A flexible new technique for camera calibration," Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 22, pp. 1330-1334, 2000.
    [29] A. Koutsoudis, B. Vidmar, G. Ioannakis, F. Arnaoutoglou, G. Pavlidis, and C. Chamzas, "Multi-image 3D reconstruction data evaluation," Journal of Cultural Heritage, vol. 15, pp. 73-79, 1/ 2014.
    [30] J. Krzesłowski, R. Sitnik, and G. Mączkowski, "Integrated three-dimensional shape and reflection properties measurement system," Applied Optics, vol. 50, pp. 532-541, 02/01 2011.

    QR CODE
    :::