| 研究生: |
黃進強 Chin-Chiang Huang |
|---|---|
| 論文名稱: |
交流耦合平衡增益之腦波量測系統 Design and Implementation of the AC-coupled EEG Measurement System |
| 指導教授: |
徐國鎧
Kuo-Kai Shyu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 63 |
| 中文關鍵詞: | 腦電波 、交流耦合電路 、KHN陷波濾波器 、低通濾波器 |
| 外文關鍵詞: | EEG, AC-coupling, biopotential amplifiers, KHN notch filter |
| 相關次數: | 點閱:8 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
大腦是我們人體重要的思想中樞,裡頭蘊藏許多未知的訊息,而腦部神經活動的綜合變化所產生之電訊號就稱作腦電波。
腦波訊號非常微弱,一般在大腦皮層振幅約為10mV,再經過頭顱等衰減後,其振幅更是小到約0.5~100uV,而且非常容易受到外來因素,如量測環境、周邊電器用品以及人體本身生理訊號的干擾所影響,因此在量測上十分不易。
一般使用腦波擷取電路,容易因為電路元件的誤差或是老化使其濾波效果不盡理想,尤其是針對電源60Hz干擾所設計之陷波濾波器,一旦元件誤差過大其衰減效果就大打折扣。
本研究設計一個雙通道的腦波擷取電路,其中包含交流耦合式前端處理電路,類比放大電路、濾波電路以及陷波濾波器,具有低雜訊、低失真及高增益等特性,對於電路元件誤差所造成之截止頻率的偏移,也可作微調來回到原先的理想設計值,並經由電路模擬與實際量測比較中得到驗證,可有效量得腦波訊號。另外搭配9V電池供應電源,使其攜帶上更方便,並且降低電源干擾。
As a thinking center, the cerebrum plays an important part for human and it’s also abundant with many unknown information. Besides, The signal, the compositive changes produced by cerebration, are called electroencephalogram (EEG).
On average, the signal of the EEG is very weak and it’s amplitude is around 10 mV under the cerebrum cortex. After flowing through the skull, the amplitude is reduced to 0.5~100uV. Moreover, it’s easily interfered by external factors such as the environment, the electrical appliance and the physical signal of the body. Hence, it’s extremely hard to measure.
Due to the error or the aging of components, EEG access to circuits always leads to unideal filter results. Once the aging of components is overgreat, the decreasing effects will be diminished, notch filter designed by the power 60Hz interference, especially.
The study proposes a two-channel EEG measurement, including ac-coupled front-end, amplifier, three order low pass filter and notch filter that possess low noise, low distortion and high gain. With regard to the departure of cut-off frequency cause by the aging, which can be revised to original ideal design by fine-tuning. By the way to compare simulation and measurement, we can get the verification and measure EEG signals efficiently. Conjugation with battery, it’s much easy to carry and decrease power interference.
[1] G. H. Hamstra, A. Peper and C. A. Grimbergen, “Low-Power,Low-Noise Instrumentation Amplifier for Physiological Signals”,Med. & Biol. Eng, Vol. 22, pp. 272-274, May 1984.
[2] H. W. Smit, K. Verton, and C. A. Grimbergen, “A Low-Cost Multi-channel Preamplifier for Physiological Signals”, IEEE Trans.Biomed.Eng., Vol. BME-34, pp. 307–310, Apr. 1987.
[3] A. C. Metting Van Rijn, A. Peper, and C. A Grimbergen, “Amplifiers for Bioelectric Events: A Design With A Minimal Number of Parts”,Med. Bio. Eng. Comput., Vol. 32, pp. 305–310, May 1994.
[4] T. Degen and H. Jäckel, “Enhancing Interference Rejection of Amplifying Electrodes by Automated Gain Adaption”, IEEE Trans.Biomed. Eng., Vol. 51, No. 11, pp. 2031–2039, Nov. 2004, to be published.
[5] T. Degen and H. Jäckel, “A Pseudodifferential Amplifier for Bioelectric Events with DC-Offset Compensation Using Two-Wired Amplifying Electrodes”, IEEE Trans. Biomed. Eng. Vol. 53, No. 2, pp.300 - 310, Feb.2006.
[6] J. C. Huhta and J. G. Webster, “60-Hz Interference in Electro-Cardiography”, IEEE Trans. Biomed. Eng., Vol. BME-20, pp. 91–101,Mar. 1973.
[7] B. B. Winter and J. G. Webster, “Driven-Right-Leg Circuit Design”,IEEE Trans. Biomed. Eng., Vol. BME-30, No. 1, pp. 62–66, Jan. 1983.
[8] A. C. Metting-van Rijn, A. Peper, and C. A. Grimbergen,“High-Quality Recording of Bioelectric Events. Part 1. Interference Reduction, Theory and Practice”, Med. Biol. Eng. Comput., Vol. 28, No. 5,pp. 389–397, Sep. 1990.
[9] A. C. Metting-van Rijn, A. Peper, and C. A. Grimbergen,“High-Quality Recording of Bioelectric Events. Part 2. Low-Noise, Low-Power Multichannel Amplifier Design”, Med. Biol. Eng. Comput., Vol. 29, No. 4, pp. 433–440, Jul.1991.
[10] M. Fernandez Chimeno and R. Pallas-Areny, “A Comprehensive Model for Power Line Interference in Biopotential Measurements”, IEEE Trans. Instrum. Meas., Vol. 49, No. 3, pp. 535–540, Jun. 2000.
[11] W. J. Ross Dunseith and E. F. Kelly, “Multichannel PC-Base Data-Acquisition System for High-Resolution EEG”, IEEE Trans. Biomed. Eng., Vol. 42, No. 12, pp. 1212-1217, Dec. 1995
[12] R. Martins, S. Selberherr, and F. A. Vaz, “A CMOS IC for Portable EEG Acquisition Systems”, IEEE Trans. Instrum. Meas., Vol. 47, No. 5, pp. 1191-1196, Oct. 1998
[13] L. Badillo, V. Ponomaryov, E. Ramos and L. Igartua, “Low Noise MuItichannel Amplifier for Portable EEG Biomedical Applications”, Proceedings of the 25th Annual Intemational Conference of EMBC, Cancun, Mtxico, Vol. 4, pp. 3309-3321, Sep. , 2003.
[14] E. Ramos, V. Ponomaryov, L. Badillo and L. Igartua, “Telemetry System for Use in EEG Multichannel Amplifier”, 1st International Conference on Electrical and Electronics Engineering, pp. 518-521 Jun. 2004.
[15] 吳東格,“個人電腦型腦電圖量測系統之研製”,國立台灣大
學電機工程研究所碩士論文,民國八十六年。
[16] 連怡仲,“數位腦波機系統之設計與研製”,國立台灣大學電
機工程研究所碩士論文,民國八十七年。
[17] 杜益昌,“多通道腦波機系統之設計與裝置”,國立台灣大學電機工程研究所碩士論文,民國八十八年。
[18] 林威助,“生理訊號擷取系統設計與心電圖之前置分析”,國
立交通大學電機與控制研究所碩士論文,民國八十九年。
[19] 蔡進寶,“腦波記錄儀設計與製作”,國立交通大學電機與控
制研究所碩士論文,民國八十九年。
[20] 楊勝文,“可攜式智慧型腦波紀錄器”,國立台灣大學醫學院工程研究所碩士論文,民國九十年。
[21] 林能毅,“十六通道腦電波訊號擷取晶片之研製”,中原大學
醫學工程研究所碩士論文,民國九十一年。
[22] 黃名斌,“USB介面之模組化腦波記錄儀”,中原大學醫學工
程研究所碩士論文,民國九十二年。
[23] 湯雅雯,“腦波量測系統之研製與腦波信號之非線性分析”,
國立成功大學電機工程研究所碩士論文,民國九十四年。
[24] 朱迺欣,“前塵往事腦醫學”,遠流出版社,31-39頁,民國八十九年。
[25] 關尚勇,林吉合,“破解腦電波”,藝軒圖書出版社,24-36、 74-128頁,民國九十一年。
[26] 張晉嘉,“生醫電訊號量測之市電干擾移除”, 國立台灣大學電機工程研究所碩士論文,民國九十年。
[27] 盧明智,黃敏祥,“OP Amp應用+實驗模擬”,全華科技圖書出版,243-279、451-544頁,民國八十四年。
[27] E. M. Spinelli, R. Pallàs-Areny, and M. A. Mayosky, “AC-Coupled Front-End for Biopotential Measurements,” IEEE Trans. Biomed. Eng.,Vol. 50, pp. 391–395, Mar. 2003.
[28] 稻葉 保,飯田文夫,“電子電路的問題與解決技巧”,建興出版,152-153頁,2007年。
[29] A. Goel, A. Vetteth, K. R. Rao, and V. Sridhar, “Active Cancellation of Acoustic Noise Using a Self-Tuned Filter”, IEEE Transactions on Circuits and Systems-I : fRegular Papers, Vol. 51 , No.11, Nov. 2004
[30] 張西川,“電子電路零組件應用手冊”,全華科技圖書出版,39-82頁,民國八十五年。