| 研究生: |
楊寶鴻 Poh-Hoong Yong |
|---|---|
| 論文名稱: |
在Kerr幾何的特殊正交座標系和狄拉克旋子 Special orthonormal frames and Dirac spinors in Kerr geometry |
| 指導教授: |
聶斯特
James M. Nester |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 畢業學年度: | 96 |
| 語文別: | 英文 |
| 論文頁數: | 48 |
| 中文關鍵詞: | 狄拉克 、旋子 、座標系 |
| 外文關鍵詞: | Dirac spinor, orthonormal frame, Kerr geometry |
| 相關次數: | 點閱:16 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
愛因斯坦的廣義相對論是一個與座標選取無關的理論,所以我們有選取座標系的自由度。我運用聶斯特教授發展出來的規範條件來選取一個正交歸一的座標,並運用在Reissner-Nordstrom 和 Kerr 幾何時空上面。這個規範條件選擇了一個特定的標架。這種特定的標架在重力系統的正能量定理証明上特別有用。另外,這種特定的標架和狄拉克方程試息息相關,透過解狄拉克方程,我們就可以選出特定的標架滿足規範條件。然而,在彎曲的時空中,要解出狄拉克方程不是一件簡單的事。我們考慮了弱重力場條件下如何定義特定的標架,還有在Reissner-Nordstrom 和 Kerr 時空上求出狄拉克方程漸近常數的解。
Since Einstein''s gravity theory is a frame independent theory, we have the freedom of choosing an orthonormal frame. I use Nester''s gauge condition to select a preferred orthonormal frame for some gravitational systems including the Reissner-Nordstrom and Kerr geometry. The gauge condition selects a special orthonormal frame (SOF). A SOF has application in particular to a positive energy proof and energy localization for a gravitational system. This gauge condition is related to the solution of the Dirac equation; by solving the Dirac equation we can determine a special orthonormal frame. However, in curved spacetime the solution of Dirac equation is highly nontrivial. We calculated the weak field limit case and
found the asymptotically constant solution for the Dirac equation in the Reissner-Nordstrom and Kerr geometry.
[1] J. M. Nester, A gauge condition for orthonormal three-frames, J. Math. Phys 30, 624 (1989).
[2] J. M. Nester, A positive gravitational energy proof ,
Phys. Lett. A 139, 112 (1989).
[3] J. M. Nester,Positive energy via teleparallel Hamiltonian , Int. J. Mod. Phys. A 4, 1755 (1989).
[4] J. M. Nester, Special orthonormal frames and energy localization, Class. Quantum Grav. 8, L19 (1991).
[5] J. M. Nester, Special orthonormal frames, J. Math. Phys 33, 910 (1992).
[6] J. M. Nester and R. S. Tung, Another positivity proof and gravitational energy localizations , Phys. Rev. D 49, 3958 (1994).
[7] J. M. Nester, R. S. Tung and Y. Z. Zhang, Ashtekar''s new variable and positive energy ,
Class. Quantum Grav. 11, 757 (1994).
[8] J. M. Nester, R. S. Tung and V. V. Zhytnikov, Some spinor-curvature identies ,
Class. Quantum Grav. 11, 983 (1994).
[9] J. M. Nester, A new gravitational energy expression with a simple positivity proof, Phys. Lett. A 83A, 241 (1981).
[10] E. Israel and J. M. Nester, Positivity of the Bondi gravitational mass, Phys. Lett. A 85A, 259 (1981).
[11] J. N. Nester, The Gravitational Hamiltonian, Asymptotic Behavior of Mass and Space-Time Geometry (Lecture Notes in Physics vol 202) , pp 155-63, edited F. Flaherty (Berlin, Springer 1984)
[12] J. Isenberg and J. Nester, Canonical Gravity, in General Relativity and Gravitation. One Hundred Years the Birth of Albert Einstein, Vol. 1, pp 23-97, edited A. Held (Plenum Press, NewYork, 1980).
[13] A. Dimakis and F. Muller-Hoissen, On a gauge condition for orthonormal three-frames, Phys. Lett. A 142, 73 (1989).
[14] A. Dimakis and F. Muller-Hoissen, Spinor field and the positivity energy theorem, Class. Quantum Grav. 7, 283 (1990).
[15] R. Schoen and S.T. Yau, On the positive mass conjecture in general relativity, Commun. Math. Phys. 65, 45 (1979).
[16] E. Witten, A new proof of the positive energy theorem, Commun. Math. Phys. 80, 381 (1981).
[17] S. Chandrasekhar, Solution of Dirac''s equation in Kerr geometry, Proc. R. Soc. Lond. A 349, 571 (1976).
[18] S. Chandrasekhar, On Mass-Dependent Spheroidal Harmonics of Spin One-Half, Proc. R. Soc. Lond. A, 391, 27 (1984).
[19] S. Chandrasekhar, The Mathematical Theory of Black Holes Oxford University Press, UK, (1983)
[20] S. A. Teukolsky, Perturbations of a rotating black hole I. Fundamental equations for gravitational, electromagnetic, and neutrino-field perturbations, Astrophys. J.185}, 635
(1973).
[21] J. B. Hartle and D. C. Wilkins, Analytic Properties of the Teukolsky Equation, Phys. Lett. A 203, 5-11 (1995).
[22] D. Ranganathan, Exact solutions to the Chandrasekhar Page angular equation, (2006), arXiv:gr-qc/0601057v2.
[23] R. H. Good, Jr. , Preperties of the Dirac Matrices
, Rev. Mod. Phys. extbf{27}, 187 (1955).
[24] W. T. Payne, Elementary Spinor Theory, Am. J. Phys. 20, 253 (1952).
[25] D. R. Brill and J. A. Wheeler , Interaction of Neutrinos and Gravitational Fields, Rev. Mod. Phys. 29, 465 (1957).
[26] L. B. Szabados, Quasi-Local Energy-Momentum and Angular Momentum in GR: A Review Article, Living Rev. Relativity 7, (2004), 4. http://www.livingreviews.org/lrr-2004-4.
[27] R. Penrose and W. Rindler, Spinors and space-time, Vol. 1: Two-Spinor Calculus and Relativistic Fields,
Cambridge University Press, Cambridge, (1984).
[28] R. Penrose and W. Rindler, Spinors and space-time, Vol. 2: Spinor and Twistor Methods in Space-Time Geometry , Cambridge University Press, Cambridge, (1986).
[29] P. Lounesto, Clifford Algebras and Spinors, 2nd edition, Cambridge University Press, Cambridge, (2001)
[30] C.W. Misner, K.S. Thorne and J.A. Wheeler, Gravitation, Freeman, New York, (1973)
[31] H. Flanders, Differential Forms with
Applications to the Physical Sciences Dover, New York, (1989).
[32] J. M. Nester, On the zeros of spinor fields and
an orthonormal frame gauge condition, to be appear in Proceedings of the Eleventh Marcel Grossmann Meeting on General Relativity, World Scientific, (2007).