跳到主要內容

簡易檢索 / 詳目顯示

研究生: 鄭又升
Yu-sheng Cheng
論文名稱: 橡膠材料中微孔的不穩定擴張
Unstable expansion of the rubber material in the microvoids
指導教授: 李顯智
Shian-jr Li
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
畢業學年度: 100
語文別: 中文
論文頁數: 65
中文關鍵詞: 孔洞擴張橡膠材料
外文關鍵詞: Hou-Abeyaratne Field, void growth, Rubber
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在反省現行文獻中,關於微孔形成理論一些可商榷之處。第一部分提出不穩定孔洞擴張有強烈與微弱的程度區別與不穩定擴張發生的難易程度及擴張速度的探討。接著再以模擬實際橡膠的各種不同材料模型比較,來探討實際橡膠材料的微孔不穩定擴張現象。
    本論文第二個部分在探討圓形微孔非對稱變形的Hou-Abeyaratne Field(HAF)的精確性。


    This paper aims to reflect on the existing literature on microvoid formation theory can be open to discussion. The first part of the expansion of unstable voids have strong and weak degree of difference and the unstable expansion of the degree of difficulty and rate of expansion. Then a variety of material models to simulate real rubber to investigate the actual rubber material voids unstable expansion phenomenon.
    The second part of this paper to investigate the non- symmetric deformation of the circular voids the accuracy of Hou-Abeyaratne Field (HAF).

    目錄 摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VI 符號表 VII 第一章 緒論 1 第二章 圓形微孔圓對稱變形計算公式 5 第三章 圓形微孔圓對稱擴張 9 3.1 設c趨近於零計算其 Pcr 9 3.2 設c為有限小計算其 Punstable 11 3.3 強烈不穩定與微弱不穩定的孔洞擴張 14 3.4 不穩定擴張發生的難易度及其擴張速度 20 3.5 真實材料的微孔擴張分析 23 第四章 圓形微孔非對稱變形計算公式 39 4.1 推導Hou-Abeyaratne 變形場(HAF)的解 39 4.2 推導HAF誤差方程式 43 第五章 Hou-Abeyaratne Field的誤差 46 第六章 結論與建議 49 參考文獻 52

    1. F.A.McClintock, A criterion for ductile fracture by the growth of holes. J.Appl. Mech., 35 (1968) 363-371.
    2. A.Needleman, Void growth in an elastic-plastic medium. J.Appl. Mech., 39 (1972) 964-970.
    3. A.L.Gurson, Continuum theory of ductile rupture by void nucleation and growth : Part Ⅰ- yield criteria and flow rules for porous ductile media. J.Energ.Matl.Tech.,Trans.ASME, (1977) 2-15.
    4. U.Stigh, Effects of interacting cavities on damage parameter. J.Appl. Mech, 53 (1986) 485-490.
    5. H.S.Hou and R.Abeyarante, Cavitation in elastic and elastic-plastic solids, J.Mech.Phys.Solids, 40 (1992) 571-592.
    6. A.N.Gent,Cavitation in rubber: a cautionary tale. Rubber Chem.Tech., 63 (1990) G49-G53.
    7. C.O.Horgan and D.A.Polignone, Cavitation in nonlinearly elastic solids: a review. Appl.Mech.Rev., 48 (1995) 471-485.
    8. C.Fong, Cavitation criterion for rubber materials: a review of void-growth models. J. Polymer Sci.: Part B: Polymer Phys., 39(2001)2081-2096.
    9. J. Sivaloganathan and S.J. Spector, On cavitation, configurational forces and implications for fracture in a nonlinearly elastic material. J. of Elasticity, 67(2002)25-49.
    10. E. Bayraktar, et. al., Damage mechanisms in natural (NR) and synthetic rubber (SBR): nucleation, growth and instability of the cavitation. Fatique Fract. Engrg. Mater. Struct., 31(2008)184-196.
    11. T.W. Wright and K.T. Ramesh, Dynamic void nucleation and growth in solids: A self-consistent statistical theory. J. Mech. Phys. Solids, 56(2008)336-359.
    12. L. Cheng and T.F. Guo, Void interaction and coalescence in polymeric materials. Int. J. Solids Struct., 44(2007)1787-1808.
    13. C. J. Quigley and D.M. Parks, The finite deformation field surrounding a mode I plane strain crack in a hyperelastic incompressible material under small-scale nonlinearity. Int. J. Fracture, 65(1994)75-96.
    14. J.C. Sobotka, R.H., Jr. Dodds and P. Sofronis, Effects of hydrogen on steady, ductile crack growth: Computational studies. Int. J. Solids Struct., 46(2009)4095-4106.
    15. M. Danielsson, D.M. Parks and M.C. Boyce, Constitutive modeling of porous hyperelastic material. Mech. Mater., 36(2004)347-358.
    16. J. Li, D. Mayau and F. Song, A constitutive model for cavitation and cavity growth in rubber-like materials under arbitrary tri-axial loading. Int. J. Solids Struct., 44(2007)6080-6100.
    17. O. Lopez-Pamies and P. Ponte Castaneda, Homogenization-based constitutive models for porous elastomers and implications for macroscopic instabilities: I—Analysis. J. Mech. Phys. Solids, 55(2007)1677-1701.
    21. J.M.Ball, Discontinous equilibrium solutions and cavitation in nonlinear elasticity. Phil.Trans.R.Soc.Lond, A306 (1982) 557-610.
    22. H.S. Hou and R. Abeyaratne, Cavitation in elastic and elastic-plastic solids.. J. Mech. Phys. Solids, 40 (1992) 571-592.
    23. C.A.Stuart, Radially symmetric cavitation for hyperelastic materials, Ann.Inst.Henri Poincare-Analyse non lineare, 2 (1985) 33-66.
    24. C.O.Horgan and R.Abeyaratne, A bifurcation problem for a compressible nonlinearly elastic medium: growth of a micro-void. J.Elasticity, 16 (1986) 189-200.
    25. F.Meynard, Existence and nonexistence results on the radially symmetric cavitation problem. Quart.Appl.Math. 50 (1992) 201-226.
    26. C.A.Stuart, Estimating the critical radius for radially symmetric cavitation, Quart.Appl.Math., 51 (1993) 251-263.
    27. S.Biwa, Critical stretch for formation of a cylindrical void in a compressible hyperelastic material. Int.J.Non-Linear Mech., 30 (1995) 899-914
    28. S.Biwa, E.Matsumoto and T.Shibata, Effect of constitutive parameters on formation of a spherical void in a compressible non-linear elastic material. J.Appl.Mech. 61 (1994) 395-401
    29. H.C.Lei(李顯智) and H.W.Chang, Void formation and growth in a class of compressible solids. J.Engrg.Math., 30 (1996) 693-706.
    30. X.G. Yuan, Z.Y. Zhu and C.J. Cheng, Study on cavitated bifurcation problems for sphere composed of hyper-elastic materials. J.Engrg. Math., 51 (2005)15-34.
    31. O. Lopez-Pamles and M.I. Idiart, An exact result for the macroscopic response of porous neo-Hookean solids. J. Elasticity, 95(2009)99-105.
    32. R. Hill, The Mathematical Theory of Plasticity. Clarendon Press, Oxford, 1950.
    33. R. Abeyaratne and H.S. Hou, J. Appl. Mech., 56(1989)40.
    34. M.S.Chou-Wang and C.O.Horgan, Void Nucleation And Growth For
    Class Of Incompressible Nonlinearly Elastic Materials, Int.J.Engrg.
    Sci., 25 (1989) 1239-1254.

    QR CODE
    :::