跳到主要內容

簡易檢索 / 詳目顯示

研究生: 羅煒勝
Wei-Shang Lo
論文名稱: 以綠色化學合成有機金屬骨架材料及其酵素複合質料之化學生物學探討
指導教授: 謝發坤
Fa-Kuen Shieh
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 化學學系
Department of Chemistry
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 118
中文關鍵詞: 酵素固定化孔洞材料化學生物學藥物載體細胞毒性蛋白質構型
外文關鍵詞: Enzyme immobilization, Porous materials, Chemical biology, Drug carrier, Cytotoxicity, Protein structure conformation
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文包含三個部分,研究主題為以綠色化學合成金屬有機骨架材(Metal-Organic Frameworks, MOFs)及其酵素複合質料之化學生物學探討,在第一部份的研究中,我們提出原位創新合成法可較有效的限制酵素的構型,進而提高其生物活性上的穩定,在此酵素構型被侷限於MOFs中之概念下,本研究以過氧化氫酶包覆於MOFs之中,通過變性劑及過氧化氫分解酶之抑制劑對過氧化氫分解酶失活機制的不同,以了解受侷限後酵素三級結構的改變,並使用螢光光譜直接了解酵素的三級結構變化,結果顯示受MOFs限制之酵素的結構改變變化程度較低,因為其三級結構被MOFs侷限後無法反摺疊,酵素結構決定酵素的功能,故在這些環境下,酵素侷限於MOFs結構之中可提升其穩定性,保持原有的酵素功能。在此,我們提出MOFs Chemical Biology的全新的概念。利用MOFs包覆生物分子來研究特定的生化現象,同時,本論文在第二部分拓展具有更大孔洞的MOFs之綠色合成法例如: University of Oslo-66,期望生物酵素能夠在其生物活性最不受影響的條件下,包覆於孔洞材料的結構之中,以利於研究其他需要大分子生物輔酶和輔因子的化學生物學課題。
    第三部分延續實驗室已畢業的顏家儀學姊之研究成果,將含有醛官能基的奈米級有機金屬骨架材料─nZIF-90─利用後修飾的方式轉換為三種分別帶有羧酸、胺基、硫醇基的不同材料,分別命名為nZIF-90-C、nZIF-90-A、nZIF-90-T。在溫和的反應條件下,材料的晶形和孔洞性質得以維持,相較於先前的文獻,本研究之方法對修飾材料之孔體積有顯著的保留。並發現此系列材料具有溫和的細胞毒性,半效應濃度(EC50)約在30~70 µg/mL,經過後修飾轉換官能基的材料nZIF-90-A及nZIF-90-T,表面帶電性較修飾前提高,利於吸附在微帶負電的細胞表面上,提高其與細胞株間的交互作用,提升其作為藥物載體的潛力及為來的應用性。


    Metal-organic Frameworks (MOFs) are a versatile and ultra-porous class of materials composed of metal nodes and organic linkers, where the physicochemical properties of the MOFs can be controlled through careful selections of the inorganic or organic precursors. Therefore, MOFs show promise for a wide range of applications ranging from gas capture to biotechnology etc. Especially, the recent progress in water-based synthesis of Zeolitic Imidazolate Framework (ZIFs) opens a potential avenue for solving hazardous synthesis of MOFs. In our previous report, we proposed the green synthesis of ZIF-90 under aqueous and further demonstrated a de novo approach for embedding enzyme in structure of ZIF-90 by introducing enzyme during the MOFs synthesis. This fact imparts the functionality of micro-porosity in ZIF-90 to enzyme for shielding the bigger size of protease and allow the smaller substrate to diffuse in for enzyme catalysis.
    In this thesis, we aim to study the merit provided by the de novo approach. We provide an additional benefit of de novo approach that the enzyme immobilized using de novo approach could shield the conformation of enzyme from unfolding, thus its biological function can be maintained under a wider range of conditions. We proposed this enhanced stability should be arisen from confinement of the enzyme molecules, wherein enzymes stay in additional mesoporous cavities formed by using enzyme as template. A fluorescence spectroscopy study shows that the structural conformation of the embedded enzyme with less change under denaturing conditions than free enzyme. Remarkably, we develop the concept of the MOFs Chemical Biology for probing on relationship between structural conformation and biological activity of the enzyme, and we try to expand the diversity of the de novo approach by exploring the other MOFs with larger aperture, which is allowed for diffusion of co-factors and co-enzymes in different sizes such as ATP and NADH. In this regard, we try to explore the synthesis UiO-66 in water-based system and mainly focus on their formation mechanism for realizing the syntheses of other MOFs material in aqueous solution. We suggested the solubility of organic linkers in aqueous solution can be the major concern in attempt to achieve a successful synthesis and provide ways to conquer the challenges.
    Further, we continued to expand the advantages of green synthesis in ZIF-90 with reduced particles size. The nature of green synthesis repels the risk of toxic solvents still being present within the particles, thus shows their potential as a drug carrier. Also, the functionality of carriers provides methods to control drug release, yet the reported modifications suffer from largely reduced in merits, such as porosity. Thus, we demonstrated a green-based and simple method for the organic functionalization of crystalline nano-sized ZIF-90 (nZIF-90) as well as at least 25% micropore volume maintained via post-synthesis modification using optimal reactant molar ratios. The structural integrity of the original compound was preserved. The cytotoxicity of the nZIF-90 and nZIF-90 transformers around 30~70 µg/mL are moderate in comparison of those other organic and inorganic drug carriers. Thus, nanoscale MOF particles with new functionalities provide a new generation of carriers for drug delivery.

    中文摘要 I Abstract III 致謝 V 目錄 VI 圖目錄 IX 表目錄 XI Part I 1 第一章 緒論 1 1-1. 金屬有機骨架材料 1 1-2. 類沸石咪唑骨架材料 4 1-3. 類沸石咪唑骨架材料-90 8 1-4. 酵素固定化於MOFs的發展 11 1-5. 研究動機與目的 14 第二章 實驗部分 15 2-1. 實驗藥品 15 2-2. 實驗儀器 17 2-2-1. 實驗使用儀器 17 2-2-2. 實驗鑑定儀器 18 2-2-3. X射線粉末繞射儀 19 2-2-4. 場發掃描式電子顯微鏡 20 2-2-5. 等溫氮氣吸/脫附儀 21 2-2-6. 螢光光譜儀 23 2-3. 酵素 24 2-3-1. 過氧化氫酶 24 2-3-2. 尿素分解酶 24 2-3-3 蛋白酶-K 25 2-4. 實驗步驟 26 2-4-1. 類沸石咪唑骨架-90包覆過氧化氫酶材料的合成 26 2-4-2. 類沸石咪唑骨架-90包覆尿素分解酶材料的合成 27 2-4-3 類沸石咪唑骨架-8包覆過氧化氫酶材料的合成 27 2-4-4. 十二烷基硫酸鈉聚丙烯醯胺膠體電泳 (SDS-PAGE) 28 2-4-5. 偵測蛋白質的濃度(Bradford Assay) 29 2-4-6. 偵測過氧化氫水溶液之濃度 30 2-4-7. 偵測尿素分解酶活性之方法 33 第三章 結果與討論 35 3-1. 酵素固定化應用於了解其酵素三級結構之探討 35 3-2. 尿素擴散進入ZIF-90之證明及相關結果 37 3-3. 空間限制酵素於ZIF-90之證明及相關結果 42 第四章 結論 48 Part II 49 第五章 緒論 49 5-1. University of Oslo-66 (Zr) 49 5-2. 研究動機與目的 52 第六章 實驗部分 53 6-1. 實驗藥品 53 6-2. 實驗儀器 54 6-2-1. 實驗使用儀器 54 6-2-2. 實驗鑑定儀器 54 6-3. 實驗步驟 55 6-3-1. 微波合成UiO-66材料之步驟 56 6-3-2. 水相合成UiO-66材料之步驟 56 6-3-3. 有機配體於水溶液中溶解度的測量 57 第七章 結果與討論 58 7-1. 綠色合成的開發及UiO-66合成文獻之探討 58 7-2. UiO-66水相合成機理之探討 61 第八章 結論 67 Part III 68 第九章 緒論 68 9-1. 藥物傳輸於MOFs的發展 68 9-2. 研究動機與目的 70 第十章 實驗部分 71 10-1. 實驗藥品 71 10-2. 實驗儀器 72 10-2-1. 實驗使用儀器 72 10-2-2. 實驗鑑定儀器 73 10-2-3. 熱重分析儀 74 10-2-4. 傅立葉轉換紅外線光譜儀 74 10-2-5. 固態核磁共振儀 75 10-2-6. 表面電位儀 76 10-3. 實驗步驟 77 10-3-1. nZIF-90之合成步驟 77 10-3-2. nZIF-90-C之合成步驟 78 10-3-3. nZIF-90-A之合成步驟 78 10-3-4. nZIF-90-T之合成步驟 79 第十一章 結果與討論 80 11-1. 藥物載體及其表面化學與細胞毒性之探討 80 11-2. 醇水混合系統合成nZIF-90奈米分子之鑑定 84 11-3. nZIF-90-C之方法優化及材料鑑定 87 11-4. nZIF-90-A and nZIF-90-T之方法優化及材料鑑定 89 11-5. 等溫氮氣吸/脫附結果之探討 92 11-6. 細胞毒性之研究 95 第十二章 結論 98 參考文獻 99

    (1) Kitagawa, S.; Kitaura, R.; Noro, S.-i. Angew. Chem. Int. Ed., 2004, 43, 2334.
    (2) Li, H.; Eddaoudi, M.; O'Keeffe, M.; Yaghi, O. M. Nature, 1999, 402, 276.
    (3) Férey, G.; Mellot-Draznieks, C.; Serre, C.; Millange, F. Acc. Chem. Res., 2005, 38, 217.
    (4) Zhou, H.-C.; Long, J. R.; Yaghi, O. M. Chem. Rev., 2012, 112, 673.
    (5) Rungtaweevoranit, B.; Diercks, C. S.; Kalmutzki, M. J.; Yaghi, O. Faraday Discuss., 2017, 201, 9.
    (6) Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M. Science, 2013, 341.
    (7) Canivet, J.; Fateeva, A.; Guo, Y.; Coasne, B.; Farrusseng, D. Chem. Soc. Rev., 2014, 43, 5594.
    (8) DeCoste, J. B.; Peterson, G. W. Chem. Rev., 2014, 114, 5695.
    (9) Fei, H.; Cohen, S. M. J. Am. Chem. Soc., 2015, 137, 2191.
    (10) Barea, E.; Montoro, C.; Navarro, J. A. R. Chem. Soc. Rev., 2014, 43, 5419.
    (11) Bétard, A.; Fischer, R. A. Chem. Rev., 2012, 112, 1055.
    (12) Campbell, M. G.; Liu, S. F.; Swager, T. M.; Dincă, M. J. Am. Chem. Soc., 2015, 137, 13780.
    (13) Choi, K. M.; Jeong, H. M.; Park, J. H.; Zhang, Y.-B.; Kang, J. K.; Yaghi, O. M. ACS Nano, 2014, 8, 7451.
    (14) Zhuang, J.; Kuo, C.-H.; Chou, L.-Y.; Liu, D.-Y.; Weerapana, E.; Tsung, C.-K. ACS Nano, 2014, 8, 2812.
    (15) Horcajada, P.; Gref, R.; Baati, T.; Allan, P. K.; Maurin, G.; Couvreur, P.; Férey, G.; Morris, R. E.; Serre, C. Chem. Rev., 2012, 112, 1232.
    (16) He, C.; Liu, D.; Lin, W. Chem. Rev., 2015, 115, 11079.
    (17) Lu, K.; He, C.; Lin, W. J. Am. Chem. Soc., 2014, 136, 16712.
    (18) Hoskins, B. F.; Robson, R. J. Am. Chem. Soc., 1990, 112, 1546.
    (19) Rabenau, A. Angew. Chem. Int. Ed., 1985, 24, 1026.
    (20) Klinowski, J.; Almeida Paz, F. A.; Silva, P.; Rocha, J. Dalton Trans., 2011, 40, 321.
    (21) Ameloot, R.; Stappers, L.; Fransaer, J.; Alaerts, L.; Sels, B. F.; De Vos, D. E. Chem. Mater., 2009, 21, 2580.
    (22) Do, J.-L.; Friščić, T. ACS Cent. Sci., 2017, 3, 13.
    (23) Qiu, L.-G.; Li, Z.-Q.; Wu, Y.; Wang, W.; Xu, T.; Jiang, X. Chem. Commun., 2008, 3642.
    (24) Alezi, D.; Belmabkhout, Y.; Suyetin, M.; Bhatt, P. M.; Weseliński, Ł. J.; Solovyeva, V.; Adil, K.; Spanopoulos, I.; Trikalitis, P. N.; Emwas, A.-H.; Eddaoudi, M. J. Am. Chem. Soc., 2015, 137, 13308.
    (25) Rimoldi, M.; Howarth, A. J.; DeStefano, M. R.; Lin, L.; Goswami, S.; Li, P.; Hupp, J. T.; Farha, O. K. ACS Catal., 2017, 7, 997.
    (26) Zhu, L.; Sheng, D.; Xu, C.; Dai, X.; Silver, M. A.; Li, J.; Li, P.; Wang, Y.; Wang, Y.; Chen, L.; Xiao, C.; Chen, J.; Zhou, R.; Zhang, C.; Farha, O. K.; Chai, Z.; Albrecht-Schmitt, T. E.; Wang, S. J. Am. Chem. Soc., 2017, 139, 14873.
    (27) Stock, N.; Biswas, S. Chem. Rev., 2012, 112, 933.
    (28) Augustus, E. N.; Nimibofa, A.; Kesiye, I. A.; Donbebe, W. Am. J. Environ. Protect., 2017, 5, 61.
    (29) Banerjee, R. P., A.; Wang, B.; Knobler, C.; Furukawa, H.; O'Keeffe, M.; Yaghi, O. M. Science, 2008, 319, 939.
    (30) Huang, X.-C.; Lin, Y.-Y.; Zhang, J.-P.; Chen, X.-M. Angew. Chem. Int. Ed., 2006, 45, 1557.
    (31) Park, K. S. Proc. Natl Acad. Sci. Usa, 2006, 103, 10186.
    (32) Hwang, S.; Chi, W. S.; Lee, S. J.; Im, S. H.; Kim, J. H.; Kim, J. J. Membr. Sci., 2015, 480, 11.
    (33) Hara, N.; Yoshimune, M.; Negishi, H.; Haraya, K.; Hara, S.; Yamaguchi, T. J. Membr. Sci., 2014, 450, 215.
    (34) Chen, B.; Yang, Z.; Zhu, Y.; Xia, Y. J. Mater. Chem. A, 2014, 2, 16811.
    (35) Pimentel, B. R.; Parulkar, A.; Zhou, E.-k.; Brunelli, N. A.; Lively, R. P. ChemSusChem, 2014, 7, 3202.
    (36) Yang, J.; Zhang, Y.-B.; Liu, Q.; Trickett, C. A.; Gutiérrez-Puebla, E.; Monge, M. Á.; Cong, H.; Aldossary, A.; Deng, H.; Yaghi, O. M. J. Am. Chem. Soc., 2017, 139, 6448.
    (37) Morris, W.; Doonan, C. J.; Furukawa, H.; Banerjee, R.; Yaghi, O. M. J. Am. Chem. Soc., 2008, 130, 12626.
    (38) Shieh, F.-K.; Wang, S.-C.; Leo, S.-Y.; Wu, K. C. W. Chem, Eur. J., 2013, 19, 11139.
    (39) Shieh, F.-K.; Wang, S.-C.; Yen, C.-I.; Wu, C.-C.; Dutta, S.; Chou, L.-Y.; Morabito, J. V.; Hu, P.; Hsu, M.-H.; Wu, K. C. W.; Tsung, C.-K. J. Am. Chem. Soc., 2015, 137, 4276.
    (40) Bae, T.-H.; Lee, J. S.; Qiu, W.; Koros, W. J.; Jones, C. W.; Nair, S. Angew. Chem. Int. Ed., 2010, 49, 9863.
    (41) Deng, J.; Wang, K.; Wang, M.; Yu, P.; Mao, L. J. Am. Chem. Soc., 2017, 139, 5877.
    (42) Chen, Y.; Lykourinou, V.; Vetromile, C.; Hoang, T.; Ming, L.-J.; Larsen, R. W.; Ma, S. J. Am. Chem. Soc., 2012, 134, 13188.
    (43) Lykourinou, V.; Chen, Y.; Wang, X.-S.; Meng, L.; Hoang, T.; Ming, L.-J.; Musselman, R. L.; Ma, S. J. Am. Chem. Soc., 2011, 133, 10382.
    (44) Li, P.; Moon, S.-Y.; Guelta, M. A.; Lin, L.; Gómez-Gualdrón, D. A.; Snurr, R. Q.; Harvey, S. P.; Hupp, J. T.; Farha, O. K. ACS Nano, 2016, 10, 9174.
    (45) Lian, X.; Fang, Y.; Joseph, E.; Wang, Q.; Li, J.; Banerjee, S.; Lollar, C.; Wang, X.; Zhou, H.-C. Chem. Soc. Rev., 2017, 46, 3386.
    (46) Jung, S.; Park, S. ACS Catal., 2017, 7, 438.
    (47) Lian, X.; Chen, Y.-P.; Liu, T.-F.; Zhou, H.-C. Chem. Sci., 2016, 7, 6969.
    (48) Li, P.; Modica, Justin A.; Howarth, Ashlee J.; Vargas L, E.; Moghadam, Peyman Z.; Snurr, Randall Q.; Mrksich, M.; Hupp, Joseph T.; Farha, Omar K. Chem., 2016, 1, 154.
    (49) Doonan, C.; Riccò, R.; Liang, K.; Bradshaw, D.; Falcaro, P. Acc. Chem. Res., 2017, 50, 1423.
    (50) Liang, K.; Ricco, R.; Doherty, C. M.; Styles, M. J.; Bell, S.; Kirby, N.; Mudie, S.; Haylock, D.; Hill, A. J.; Doonan, C. J.; Falcaro, P. Nat. Commun., 2015, 6, 7240.
    (51) Li, P.; Moon, S.-Y.; Guelta, M. A.; Harvey, S. P.; Hupp, J. T.; Farha, O. K. J. Am. Chem. Soc., 2016, 138, 8052.
    (52) Hou, M.; Zhao, H.; Feng, Y.; Ge, J. Bioresour. Bioprocess., 2017, 4, 40.
    (53) W. H. Bragg, M. A., F. R. S., W. L. Bragg, B. A. Proc. Royal Soc. A, 1913, 88, 428.
    (54) Sing, K. S. W.; Everett, D. H.; Haul, R. A. W.; Moscou, L.; Pierotti, R. A.; Rouquerol, J.; Siemieniewska, T. Pure Appl. Chem., 1985, 57, 603.
    (55) Schroeder, W. A.; Shelton, J. R.; Shelton, J. B.; Olson, B. M. Biochim. Biophys. Acta, 1964, 89, 47.
    (56) Orr, C. W. M. Biochemistry, 1967, 6, 3000.
    (57) Margoliash, E.; Novogrodsky, A.; Schejter, A. Biochem. J., 1960, 74, 339.
    (58) Ueda, M.; Kinoshita, H.; Yoshida, T.; Kamasawa, N.; Osumi, M.; Tanaka, A. FEMS Microbiol. Lett., 2003, 219, 93.
    (59) Dixon, N. E.; Gazzola, C.; Blakeley, R. L.; Zerner, B. J. Am. Chem. Soc., 1975, 97, 4131.
    (60) Ebeling, W.; Hennrich, N.; Klockow, M.; Metz, H.; Orth, H. D.; Lang, H. FEBS J., 1974, 47, 91.
    (61) Bradford, M. M. Anal. Biochem., 1976, 72, 248.
    (62) Ogura, Y.; Yamazaki, I. J. Biochem., 1983, 94, 403.
    (63) Jiang, Z.-Y.; Woollard, A. C. S.; Wolff, S. P. FEBS Letters, 1990, 268, 69.
    (64) Nelson, D. P.; Kiesow, L. A. Anal. Biochem., 1972, 49, 474.
    (65) Štefanac, Z.; Tomašković, M.; Raković-tresić, Z. Anal. Lett., 1969, 2, 197.
    (66) Monera, O. D.; Kay, C. M.; Hodges, R. S. Protein Sci., 1994, 3, 1984.
    (67) Pähler, A.; Banerjee, A.; Dattagupta, J. K.; Fujiwara, T.; Lindner, K.; Pal, G. P.; Suck, D.; Weber, G.; Saenger, W. The EMBO Journal, 1984, 3, 1311.
    (68) Liang, K.; Coghlan, C. J.; Bell, S. G.; Doonan, C.; Falcaro, P. Chem. Commun., 2016, 52, 473.
    (69) Vallée-Bélisle, A.; Michnick, S. W. Nat. Struct. Mol. Biol., 2012, 19, 731.
    (70) Goyal, M. M.; Basak, A. Protein Cell, 2010, 1, 888.
    (71) Patra, M.; Mukhopadhyay, C.; Chakrabarti, A. PLOS ONE, 2015, 10, e0116991.
    (72) Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G. D. Science, 1998, 279, 548.
    (73) Mylonas, E.; Svergun, D. I. J. Appl. Crystallogr., 2007, 40, s245.
    (74) Cavka, J. H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.; Bordiga, S.; Lillerud, K. P. J. Am. Chem. Soc., 2008, 130, 13850.
    (75) Bai, Y.; Dou, Y.; Xie, L.-H.; Rutledge, W.; Li, J.-R.; Zhou, H.-C. Chem. Soc. Rev., 2016, 45, 2327.
    (76) Deria, P.; Mondloch, J. E.; Tylianakis, E.; Ghosh, P.; Bury, W.; Snurr, R. Q.; Hupp, J. T.; Farha, O. K. J. Am. Chem. Soc., 2013, 135, 16801.
    (77) Mondloch, J. E.; Bury, W.; Fairen-Jimenez, D.; Kwon, S.; DeMarco, E. J.; Weston, M. H.; Sarjeant, A. A.; Nguyen, S. T.; Stair, P. C.; Snurr, R. Q.; Farha, O. K.; Hupp, J. T. J. Am. Chem. Soc., 2013, 135, 10294.
    (78) Feng, D.; Gu, Z.-Y.; Li, J.-R.; Jiang, H.-L.; Wei, Z.; Zhou, H.-C. Angew. Chem. Int. Ed., 2012, 51, 10307.
    (79) Nguyen, H. G. T.; Mao, L.; Peters, A. W.; Audu, C. O.; Brown, Z. J.; Farha, O. K.; Hupp, J. T.; Nguyen, S. T. Catal. Sci. Tech., 2015, 5, 4444.
    (80) Tan, Y.; Zhang, W.; Gao, Y.; Wu, J.; Tang, B. RSC Advances, 2015, 5, 17601.
    (81) Zhang, W.; Lu, G.; Cui, C.; Liu, Y.; Li, S.; Yan, W.; Xing, C.; Chi, Y. R.; Yang, Y.; Huo, F. Adv. Mater., 2014, 26, 4056.
    (82) Hu, Z.; Peng, Y.; Kang, Z.; Qian, Y.; Zhao, D. Inorg. Chem., 2015, 54, 4862.
    (83) Liu, X.; Demir, N. K.; Wu, Z.; Li, K. J. Am. Chem. Soc., 2015, 137, 6999.
    (84) Wu, H.; Chua, Y. S.; Krungleviciute, V.; Tyagi, M.; Chen, P.; Yildirim, T.; Zhou, W. J. Am. Chem. Soc., 2013, 135, 10525.
    (85) Reinsch, H. Eur. J. Inorg. Chem., 2016, 2016, 4290.
    (86) Yang, Q.; Vaesen, S.; Ragon, F.; Wiersum, A. D.; Wu, D.; Lago, A.; Devic, T.; Martineau, C.; Taulelle, F.; Llewellyn, P. L.; Jobic, H.; Zhong, C.; Serre, C.; De Weireld, G.; Maurin, G. Angew. Chem. Int. Ed., 2013, 52, 10316.
    (87) Reinsch, H.; Waitschat, S.; Chavan, S. M.; Lillerud, K. P.; Stock, N. Eur. J. Inorg. Chem., 2016, 2016, 4490.
    (88) Ragon, F.; Campo, B.; Yang, Q.; Martineau, C.; Wiersum, A. D.; Lago, A.; Guillerm, V.; Hemsley, C.; Eubank, J. F.; Vishnuvarthan, M.; Taulelle, F.; Horcajada, P.; Vimont, A.; Llewellyn, P. L.; Daturi, M.; Devautour-Vinot, S.; Maurin, G.; Serre, C.; Devic, T.; Clet, G. J. Mater. Chem. A, 2015, 3, 3294.
    (89) Reinsch, H.; Bueken, B.; Vermoortele, F.; Stassen, I.; Lieb, A.; Lillerud, K.-P.; De Vos, D. CrystEngComm, 2015, 17, 4070.
    (90) Yang, D.; Bernales, V.; Islamoglu, T.; Farha, O. K.; Hupp, J. T.; Cramer, C. J.; Gagliardi, L.; Gates, B. C. J. Am. Chem. Soc., 2016, 138, 15189.
    (91) Hu, Z.; Zhao, D. Dalton Trans., 2015, 44, 19018.
    (92) Hennig, C.; Weiss, S.; Kraus, W.; Kretzschmar, J.; Scheinost, A. C. Inorg. Chem., 2017, 56, 2473.
    (93) Schaate, A. Chem. Eur. J., 2011, 17, 6643.
    (94) Sang, X.; Zhang, J.; Xiang, J.; Cui, J.; Zheng, L.; Zhang, J.; Wu, Z.; Li, Z.; Mo, G.; Xu, Y.; Song, J.; Liu, C.; Tan, X.; Luo, T.; Zhang, B.; Han, B. Nat. Commun., 2017, 8, 175.
    (95) Muthu Prabhu, S.; Meenakshi, S. Chem. Eng. J., 2015, 262, 224.
    (96) Allen, T. M.; Cullis, P. R. Science, 2004, 303, 1818.
    (97) DeSantis, C. E.; Lin, C. C.; Mariotto, A. B.; Siegel, R. L.; Stein, K. D.; Kramer, J. L.; Alteri, R.; Robbins, A. S.; Jemal, A. CA: Cancer J. Clin., 2014, 64, 252.
    (98) Teplensky, M. H.; Fantham, M.; Li, P.; Wang, T. C.; Mehta, J. P.; Young, L. J.; Moghadam, P. Z.; Hupp, J. T.; Farha, O. K.; Kaminski, C. F.; Fairen-Jimenez, D. J. Am. Chem. Soc., 2017, 139, 7522.
    (99) Horcajada, P.; Chalati, T.; Serre, C.; Gillet, B.; Sebrie, C.; Baati, T.; Eubank, J. F.; Heurtaux, D.; Clayette, P.; Kreuz, C.; Chang, J.-S.; Hwang, Y. K.; Marsaud, V.; Bories, P.-N.; Cynober, L.; Gil, S.; Férey, G.; Couvreur, P.; Gref, R. Nat. Mat., 2009, 9, 172.
    (100) Dong, Z.; Sun, Y.; Chu, J.; Zhang, X.; Deng, H. J. Am. Chem. Soc., 2017, 139, 14209.
    (101) Andrew, E. R.; Bradbury, A.; Eades, R. G. Nature, 1958, 182, 1659.
    (102) Davis, M. E.; Chen, Z.; Shin, D. M. Nat Rev Drug Discov, 2008, 7, 771.
    (103) Li, S.; Wang, K.; Shi, Y.; Cui, Y.; Chen, B.; He, B.; Dai, W.; Zhang, H.; Wang, X.; Zhong, C.; Wu, H.; Yang, Q.; Zhang, Q. Adv. Func. Mat., 2016, 26, 2715.
    (104) Lampam GM, P. D., Kriz GS,Vyvyan JR Spectroscopy; Fourth ed.; Brooks/Cole, Cengage Learning Canada, 2010.
    (105) Pretsch, E.; Bühlmann, P.; Affolter, C.; Pretsch, E.; Bhuhlmann, P.; Affolter, C. Structure determination of organic compounds; Springer, 2009.
    (106) Yee, K.-K.; Reimer, N.; Liu, J.; Cheng, S.-Y.; Yiu, S.-M.; Weber, J.; Stock, N.; Xu, Z. J. Am. Chem. Soc., 2013, 135, 7795.
    (107) Williams, K.; Meng, L.; Lee, S.; Lux, L.; Gao, W.; Ma, S. Inorg. Chem. Front., 2016, 3, 393.
    (108) Bhattacharjee, S.; Lee, Y.-R.; Ahn, W.-S. CrystEngComm, 2015, 17, 2575.
    (109) Garzón-Tovar, L.; Rodríguez-Hermida, S.; Imaz, I.; Maspoch, D. J. Am. Chem. Soc., 2017, 139, 897.
    (110) He, Q.; Zhang, Z.; Gao, Y.; Shi, J.; Li, Y. Small, 2009, 5, 2722.
    (111) Pan, Y.; Neuss, S.; Leifert, A.; Fischler, M.; Wen, F.; Simon, U.; Schmid, G.; Brandau, W.; Jahnen-Dechent, W. Small, 2007, 3, 1941.
    (112) Tamames-Tabar, C.; Cunha, D.; Imbuluzqueta, E.; Ragon, F.; Serre, C.; Blanco-Prieto, M. J.; Horcajada, P. J. Mater. Chem. B, 2014, 2, 262.
    (113) Wang, X.-G.; Dong, Z.-Y.; Cheng, H.; Wan, S.-S.; Chen, W.-H.; Zou, M.-Z.; Huo, J.-W.; Deng, H.-X.; Zhang, X.-Z. Nanoscale, 2015, 7, 16061.
    (114) Ren, F.; Yang, B.; Cai, J.; Jiang, Y.; Xu, J.; Wang, S. J. Hazard. Mater., 2014, 271, 283.
    (115) Jin, H.; Heller, D. A.; Sharma, R.; Strano, M. S. ACS Nano, 2009, 3, 149.

    QR CODE
    :::