跳到主要內容

簡易檢索 / 詳目顯示

研究生: 朱衡冰
HENG-BING ZHU
論文名稱: 行動隨意網路下基於節點移動和地理方位之路由方法
A Routing Scheme Based on Node Mobility and Geographic Location in Mobile Ad Hoc Networks
指導教授: 胡誌麟
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 通訊工程學系
Department of Communication Engineering
論文出版年: 2021
畢業學年度: 110
語文別: 中文
論文頁數: 71
中文關鍵詞: 行動隨意網路地理路由機會路由節點移動趨勢
相關次數: 點閱:17下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 移動自組織網路(mobile ad-hoc network,MANET)是一個由幾十到上百個節點組成的、採用無線通信方式的、動態組網的網路,可以通過動態路由技術進行訊息的傳輸,但是也存在網路帶寬受限、對即時性業務支持較差和安全性不高等弊端。本文旨在提高節點對歷史資訊、地理位置和鄰域拓撲資訊的利用,從而減小訊息抵達目的地所花費的成本,提高訊息的成功抵達率。本文提出了一種在應用於MANET,基於節點的移動趨勢和地理位置選擇兩跳(Two-hop)的路徑進行訊息傳遞的方案,命名為Routing Scheme Based on Node Mobiility and Geographic Location(RSMG)。該方案首先以當前節點和目的地之間的連線作為基準線,限定掃描範圍,獲取範圍內符合要求的第一跳節點,之後以第一跳節點為基準,根據第一跳節點和目的地之間的連線,限定掃描範圍,得到第二跳節點,接著對所有路徑的偏移角度進行初步篩選,得到若干備選路徑,根據備選路徑中第二跳節點的移動趨勢,獲取速度向量與目的地之間的偏移角度,然後為所有備選的路徑計算分配權重值,最後根據權重值大小,對路徑進行最後一次篩選,進行數據傳輸。我們在ONE模擬器上進行參數仿真,以訊息抵達率和成本作為性能指標,結果顯示,我們的方案比Epidemic訊息抵達率低10%,但是成本減少了90%;對比其他兩種方案,我們的方案在訊息抵達率上高10\%至20%的情況下,還擁有著較小的成本。


    Mobile ad-hoc network (MANET) is a decentralized wireless network composed of dozens to hundreds of nodes. Without those pro-existing networking infrastructures, MANET transmits messages through dynamic routing methods, which succeeds in data delivery between source and destination nodes. However, there are some disadvantages such as limited network bandwidth, poor support for real-time services, and low security. This study aims to reduce the cost of message transmission and increase the delivery rate.Thus, we proposes a message transmission scheme based on the nodes' movement trend and geographic location to select a two-hop route for MANET, named Routing Scheme Based on Node Mobiility and Geographic Location (RSMG). Firstly, we use the connection between the current node and the destination as the baseline, limit the scanning range, and obtain the one-hop nodes within the range. Secondly, we take this information as the basis and scan the next-hop nodes to filter all paths, then obtain candidate paths. Thirdly, we calculate the offset angle according to the velocity vector, then calculate and assign a weight value for all paths. Finally, we filter all paths according to the weight value for data transmission.We take the delivery rate and cost as performance indicators. The results showed that our solution was 10% lower than the Epidemic delivery rate, but the cost was reduced by 90%; compared with the other two schemes, Our solution has a lower cost when the delivery rate is 10% to 20% higher.

    目錄 摘要 I Abstract II 圖目錄 V 表目錄 VII 第一章 簡介 1 第二章 研究背景與相關論文探討 3 2.1 機會路由方案 3 2.2 地理路由 5 2.2.1 貪婪轉發 5 2.2.2 面路由 6 2.2.3 地理路由中的其他研究 6 第三章 基於移動趨勢和地理位置的路由方案(RSMG) 9 3.1 動機和設計思路 9 3.2 系統模型 12 3.3 方案設計 13 3.3.1 兩跳轉發路徑 15 3.3.2 第一跳節點掃描及相關角度 16 3.3.3 第二跳節點掃描及相關角度 18 3.3.4 路徑總和角計算 20 3.3.5 權重公式的設計和計算 23 3.4 關於參數變動的影響 26 3.4.1 總和角限制角θi的選取 26 3.4.2 權重比重調節參數α的選取 27 3.4.3 權重閾值W0的選取 27 第四章 仿真模擬 29 4.1 性能指標 29 4.2 移動模型 29 4.3 用於比較的對照組Comparison Method 30 4.4 環境設置 30 4.4.1 ShortPathMapMovement仿真環境設置 31 4.4.2 TVCM仿真環境設置 31 第五章 結果分析-ShortPathMapMovement 34 5.1 參數α、θi、W0的影響 34 5.2 性能分析 40 5.2.1 不同TTL值的仿真結果 40 5.2.2 不同Buffer size值的仿真結果 43 第六章 結果分析-TVCM 45 6.1 參數α、θi、W0的影響 45 6.2 性能分析 47 6.2.1 不同TTL值的仿真結果 47 6.2.2 不同Buffersize值的仿真結果 49 第七章 結論 54 參考文獻 56

    [1] A. Vahdat, D. Becker et al., “Epidemic routing for partially connected ad hoc net- works,” 2000.
    [2] Y. Cao, Z. Sun, N. Wang, M. Riaz, H. Cruickshank, and X. Liu, “Geographic-based spray-and-relay (gsar): an efficient routing scheme for dtns,” IEEE Transactions on Vehicular Technology, vol. 64, no. 4, pp. 1548–1564, 2015.
    [3] S. Grasic, E. Davies, A. Lindgren, and A. Doria, “The evolution of a dtn routing protocol-prophetv2,” in Proceedings of the 6th ACM workshop on Challenged net- works, 2011, pp. 27–30.
    [4] D. B. Johnson and D. A. Maltz, “Dynamic source routing in ad hoc wireless net- works,” in Mobile computing. Springer, 1996, pp. 153–181.
    [5] C. E. Perkins and E. M. Royer, “Ad-hoc on-demand distance vector routing,” in Proceedings WMCSA’99. Second IEEE Workshop on Mobile Computing Systems and Applications. IEEE, 1999, pp. 90–100.
    [6] P. Jacquet, P. Muhlethaler, T. Clausen, A. Laouiti, A. Qayyum, and L. Viennot, “Optimized link state routing protocol for ad hoc networks,” in Proceedings. IEEE International Multi Topic Conference, 2001. IEEE INMIC 2001. Technology for the 21st Century. IEEE, 2001, pp. 62–68.

    [7] P. R. Pereira, A. Casaca, J. J. Rodrigues, V. N. Soares, J. Triay, and C. Cervelló- Pastor, “From delay-tolerant networks to vehicular delay-tolerant networks,” IEEE Communications Surveys & Tutorials, vol. 14, no. 4, pp. 1166–1182, 2011.
    [8] M. Y. S. Uddin, H. Ahmadi, T. Abdelzaher, and R. Kravets, “A low-energy, multi- copy inter-contact routing protocol for disaster response networks,” in Proceedings of 2009 6th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks. IEEE, 2009, pp. 1–9.
    [9] K. Fall, “A delay-tolerant network architecture for challenged internets,” in Proceed- ings of the 2003 conference on Applications, technologies, architectures, and protocols for computer communications, 2003, pp. 27–34.
    [10] T. Spyropoulos, K. Psounis, and C. S. Raghavendra, “Spray and wait: an efficient routing scheme for intermittently connected mobile networks,” in Proceedings of the 2005 ACM SIGCOMM workshop on Delay-tolerant networking, 2005, pp. 252–259.
    [11] A. Lindgren, A. Doria, and O. Schelén, “Probabilistic routing in intermittently con- nected networks,” ACM SIGMOBILE mobile computing and communications review, vol. 7, no. 3, pp. 19–20, 2003.
    [12] B. B. Bista and D. B. Rawat, “Ea-prophet: An energy aware prophet-based routing protocol for delay tolerant networks,” in Proceedings of 2017 IEEE 31st International Conference on Advanced Information Networking and Applications (AINA). IEEE, 2017, pp. 670–677.
    [13] H.-J. Lee, J.-C. Nam, W.-K. Seo, Y.-Z. Cho, and S.-H. Lee, “Enhanced prophet routing protocol that considers contact duration in dtns,” in Proceedings of 2015 International Conference on Information Networking (ICOIN). IEEE, 2015, pp. 523–524.
    [14] C. Yu, Z. Tu, D. Yao, F. Lu, and H. Jin, “Probabilistic routing algorithm based on contact duration and message redundancy in delay tolerant network,” International Journal of Communication Systems, vol. 29, no. 16, pp. 2416–2426, 2016.

    [15] T.-K. Huang, C.-K. Lee, and L.-J. Chen, “Prophet+: An adaptive prophet-based routing protocol for opportunistic network,” in Proceedings of 2010 24th IEEE Inter- national Conference on Advanced Information Networking and Applications. IEEE, 2010, pp. 112–119.
    [16] P. Sok, S. Tan, and K. Kim, “Prophet routing protocol based on neighbor node dis- tance using a community mobility model in delay tolerant networks,” in Proceedings of 2013 IEEE 10th International Conference on High Performance Computing and Communications & 2013 IEEE International Conference on Embedded and Ubiqui- tous Computing. IEEE, 2013, pp. 1233–1240.
    [17] F. Cadger, K. Curran, J. Santos, and S. Moffett, “A survey of geographical routing in wireless ad-hoc networks,” IEEE Communications Surveys & Tutorials, vol. 15, no. 2, pp. 621–653, 2012.
    [18] Y. Li, C. S. Chen, Y.-Q. Song, Z. Wang, and Y. Sun, “Enhancing real-time delivery in wireless sensor networks with two-hop information,” IEEE Transactions on industrial informatics, vol. 5, no. 2, pp. 113–122, 2009.
    [19] B. Karp and H.-T. Kung, “Gpsr: Greedy perimeter stateless routing for wireless networks,” in Proceedings of the 6th annual international conference on Mobile com- puting and networking, 2000, pp. 243–254.
    [20] Y.-B. Ko and N. H. Vaidya, “Location-aided routing (lar) in mobile ad hoc networks,”
    Wireless networks, vol. 6, no. 4, pp. 307–321, 2000.

    [21] I. Banerjee, I. Roy, A. R. Choudhury, B. D. Sharma, and T. Samanta, “Shortest path based geographical routing algorithm in wireless sensor network,” in Proceedings of 2012 International Conference on Communications, Devices and Intelligent Systems (CODIS). IEEE, 2012, pp. 262–265.
    [22] S. Hyeon, K.-I. Kim, and S. Yang, “A new geographic routing protocol for aircraft ad hoc networks,” in Proceedings of 29th digital avionics systems conference. IEEE, 2010, pp. 2–E.

    [23] K. Saifullah and K.-I. Kim, “A new geographical routing protocol for heterogeneous aircraft ad hoc networks,” in Proceedings of 2012 IEEE/AIAA 31st Digital Avionics Systems Conference (DASC). IEEE, 2012, pp. 4B5–1.
    [24] K. Peters, A. Jabbar, E. K. Cetinkaya, and J. P. Sterbenz, “A geographical routing protocol for highly-dynamic aeronautical networks,” in Proceedings of 2011 IEEE Wireless Communications and Networking Conference. IEEE, 2011, pp. 492–497.
    [25] Y. Cao, Z. Sun, H. Cruickshank, and F. Yao, “Approach-and-roam (aar): a geo- graphic routing scheme for delay/disruption tolerant networks,” IEEE transactions on Vehicular Technology, vol. 63, no. 1, pp. 266–281, 2013.
    [26] Y. Cao, Z. Sun, N. Wang, M. Riaz, H. Cruickshank, and X. Liu, “Geographic-based spray-and-relay (gsar): an efficient routing scheme for dtns,” IEEE Transactions on Vehicular Technology, vol. 64, no. 4, pp. 1548–1564, 2014.
    [27] Y. Cao, K. Wei, G. Min, J. Weng, X. Yang, and Z. Sun, “A geographic multicopy routing scheme for dtns with heterogeneous mobility,” IEEE Systems Journal, vol. 12, no. 1, pp. 790–801, 2016.
    [28] L. Shu, Y. Zhang, L. T. Yang, Y. Wang, M. Hauswirth, and N. Xiong, “Tpgf: ge- ographic routing in wireless multimedia sensor networks,” Telecommunication Sys- tems, vol. 44, no. 1, pp. 79–95, 2010.
    [29] D. Z. Gargary, F. Osali, and A. M. A. Hemmatyar, “Geographic routing with en- ergy constraint in wireless multimedia sensor networks,” in Proceedings of 2019 27th Iranian Conference on Electrical Engineering (ICEE). IEEE, 2019, pp. 2028–2032.
    [30] H. Huang, H. Yin, G. Min, J. Zhang, Y. Wu, and X. Zhang, “Energy-aware dual- path geographic routing to bypass routing holes in wireless sensor networks,” IEEE Transactions on Mobile Computing, vol. 17, no. 6, pp. 1339–1352, 2017.
    [31] S. Din, K. N. Qureshi, M. S. Afsar, J. J. Rodrigues, A. Ahmad, and G. S. Choi, “Beaconless traffic-aware geographical routing protocol for intelligent transportation system,” IEEE Access, vol. 8, pp. 187 671–187 686, 2020.

    [32] N. Arjun and S. S. Chaudhari, “Multi-objective geographic routing protocol for wire- less ad-hoc networks,” in Proceedings of 2018 3rd IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT). IEEE, 2018, pp. 2561–2565.
    [33] N. T. Hadi et al., “A swing routing approach to improve performance of short- est geographical routing protocol for wireless sensor networks,” in Proceedings of the 2019 International Conference on Information and Communications Technology (ICOIACT). IEEE, 2019, pp. 291–296.
    [34] M. H. Hegazy, A. A. El-Sherif, and T. ElBatt, “Geographic routing with cooperation for reliable paths in device-to-device networks,” in Proceedings of 2019 IEEE Wireless Communications and Networking Conference (WCNC). IEEE, 2019, pp. 1–7.
    [35] A. Keränen, J. Ott, and T. Kärkkäinen, “The one simulator for dtn protocol evalu- ation,” in Proceedings of 2nd international conference on simulation tools and tech- niques, 2009, pp. 1–10.
    [36] W.-J. Hsu, T. Spyropoulos, K. Psounis, and A. Helmy, “Modeling spatial and tem- poral dependencies of user mobility in wireless mobile networks,” IEEE/ACM Trans- actions on networking, vol. 17, no. 5, pp. 1564–1577, 2009.

    QR CODE
    :::