| 研究生: |
林廷翰 Ting-Han Lin |
|---|---|
| 論文名稱: |
一種可同時更新神經網路各層網路參數的新技術— 採用關聯式學習及管路化機制 Enabling simultaneous parameter updates in different layers for a neural network —using associated learning and pipeline |
| 指導教授: |
陳弘軒
Hung-Hsuan Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 資訊工程學系 Department of Computer Science & Information Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 50 |
| 中文關鍵詞: | 倒傳遞 、反向鎖定 、關聯式學習 、平行化訓練 、模型平行化 |
| 外文關鍵詞: | back-propagation, backward locking, associated learning, parallel training, model parallelism |
| 相關次數: | 點閱:16 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
倒傳遞 (Back-propagation, BP) 廣泛運用於今日的深度學習演算法,然而它仍存在反向鎖定的問題導致模型訓練效率不佳。許多研究嘗試解決反向鎖定問題,而關聯式學習 (Associated Learning, AL) 便是其中一種模型架構。雖然關聯式學習理論上可透過管線化來增加訓練的效率,但原論文並未實現管線化,本論文補足這個部份,並透過大量實驗及效能分析工具(profiler) 觀察關聯式學習管線化後的實際行為。本論文亦和過去使用倒傳遞訓練之模型做比較,探討各自的優勢與限制,並討論關聯式學習未來的研究方向。
Back-propagation (BP) is widely utilized in deep learning algorithms, but it suffers from the issue of backward locking, resulting in inefficient model training. Various research efforts have been made to address this problem, and one promising solution is Associated Learning (AL). In theory, AL has the potential to enhance training efficiency through pipelining. However, the original proposal lacks the implementation of the pipeline. In this thesis, we bridge this gap by implementing the pipeline mechanism and conducting experiments on multiple GPUs. By leveraging profiling tools, we analyze the behavior of AL after pipelining. We compare models trained using back-propagation and pipelined AL to examine their respective advantages and limitations. Moreover, we discuss potential future research directions for Associated Learning.
[1] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by
back-propagating errors,” nature, vol. 323, no. 6088, pp. 533–536, 1986.
[2] M. Jaderberg, W. M. Czarnecki, S. Osindero, et al., “Decoupled neural interfaces
using synthetic gradients,” in International conference on machine learning, PMLR,
2017, pp. 1627–1635.
[3] W. M. Czarnecki, G. Świrszcz, M. Jaderberg, S. Osindero, O. Vinyals, and K.
Kavukcuoglu, “Understanding synthetic gradients and decoupled neural interfaces,”
in International Conference on Machine Learning, PMLR, 2017, pp. 904–912.
[4] D.-H. Lee, S. Zhang, A. Fischer, and Y. Bengio, “Difference target propagation,” in
Machine Learning and Knowledge Discovery in Databases: European Conference,
ECML PKDD 2015, Porto, Portugal, September 7-11, 2015, Proceedings, Part I
15, Springer, 2015, pp. 498–515.
[5] D. Y. Wu, D. Lin, V. Chen, and H.-H. Chen, “Associated learning: An alternative to end-to-end backpropagation that works on cnn, rnn, and transformer,” in
International Conference on Learning Representations, 2021.
[6] Y.-W. Kao and H.-H. Chen, “Associated learning: Decomposing end-to-end backpropagation based on autoencoders and target propagation,” Neural Computation,
vol. 33, no. 1, pp. 174–193, 2021.
[7] C.-Y. Chuang, J. Robinson, Y.-C. Lin, A. Torralba, and S. Jegelka, “Debiased
contrastive learning,” Advances in neural information processing systems, vol. 33,
pp. 8765–8775, 2020.
[8] C.-K. Wang, “利用 scpl 分解端到端倒傳遞演算法,” M.S. thesis, National Central
University, 2022.
[9] C. J. Shallue, J. Lee, J. Antognini, J. Sohl-Dickstein, R. Frostig, and G. E. Dahl,
“Measuring the effects of data parallelism on neural network training,” arXiv preprint
arXiv:1811.03600, 2018.
[10] T. Vogels, S. P. Karimireddy, and M. Jaggi, “Powersgd: Practical low-rank gradient compression for distributed optimization,” Advances in Neural Information
Processing Systems, vol. 32, 2019.
35
參考文獻
[11] Y. Huang, Y. Cheng, A. Bapna, et al., “Gpipe: Efficient training of giant neural
networks using pipeline parallelism,” Advances in neural information processing
systems, vol. 32, 2019.
[12] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale
image recognition,” arXiv preprint arXiv:1409.1556, 2014.
[13] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”
in Proceedings of the IEEE conference on computer vision and pattern recognition,
2016, pp. 770–778.
[14] M. Schuster and K. K. Paliwal, “Bidirectional recurrent neural networks,” IEEE
transactions on Signal Processing, vol. 45, no. 11, pp. 2673–2681, 1997.
[15] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation,
vol. 9, no. 8, pp. 1735–1780, 1997.
[16] A. Vaswani, N. Shazeer, N. Parmar, et al., “Attention is all you need,” Advances
in neural information processing systems, vol. 30, 2017.
[17] D. Narayanan, A. Harlap, A. Phanishayee, et al., “Pipedream: Generalized pipeline
parallelism for dnn training,” in Proceedings of the 27th ACM Symposium on Operating Systems Principles, 2019, pp. 1–15.
[18] M. Shoeybi, M. Patwary, R. Puri, P. LeGresley, J. Casper, and B. Catanzaro,
“Megatron-lm: Training multi-billion parameter language models using model parallelism,” arXiv preprint arXiv:1909.08053, 2019.