跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳范倫
Chen Fan Lun
論文名稱: 發展水質感測物聯網快速反應支援系統
Development of agile response support systems(ARSS) for water quality sensing IoT
指導教授: 秦靜如
于樹偉
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 環境工程研究所
Graduate Institute of Environmental Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 106
中文關鍵詞: 環境物聯網污染熱區分析模組污染源頭分析模組快速反 應決策支援
外文關鍵詞: Environmental IoT, Polluting Hot Area Analytical Module, Polluting Source Analytical Module, Agile Response Support System
相關次數: 點閱:18下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 過去傳統的環境監測與數據分析,大多利用昂貴的大型設備或人工採樣後,進到標準實驗室進行儀器分析,在耗時且耗人力的前提下,又無法及時掌握污染特徵進行溯源。故自21世紀開始,部分國家、政府及研究單位利用物聯網及低成本感測設備進行環境污染監測,比起過往已可發揮24小時連續監測及提高數據在時間及空間的解析度,但也因開發初期對感測設備品質掌握度不一,同步衍生布建成本無法掌握及疏於維運,雖有大量數據卻無法妥善應用分析之窘境。
    有鑑於此,本研究參考「毒災應變決策支援模式(TDSS)」及國外「低成本感測器布建及應用案例」,以台灣環境污染事件應變情境為主軸下,研發一套完整「水質感測物聯網布建及數據應用規範」,從感測設備的品保品管及雲端校正模式,配合布建場域優化選址及低成本維運,設計水質自動連續監測預警分析模式,設定預警規則並自動判別環境異常或儀器異常。透過「疑似污染源頭分析模組」,結合動靜態跨域資訊迅速溯源至上游,以物聯網技術發出通知警訊並啟動稽查程序;建立「污染熱區分析模組」評估未來數小時內污染物的影響範圍,即時展開應變行動,達到快速預警水污染防治之成效。
    本研究以桃園市作為實際驗證場域,布建100台國產化小型水質監測設備,驗證「水質感測物聯網快速反應支援系統」之整體解決方案(Total Solution)。結果顯示導入酸鹼值、導電度與溫度三合一感測晶片,其量測範圍與精度/誤差可控制在pH 3 – pH 12 ± pH 0.5 (R2=0.978)、90 - 10500μS /cm±13.5% (R2=0.990),以及10 - 85℃ ± 0.5℃ (R2=0.990)。COD+SS感測模組之COD與SS量測範圍分別可達0.1-300 mg/L與0.1-100 mg/L,精密度與準確度可達10%與40%。在自然水體、工業區排水及農渠灌溉水路可透過上述物聯網布建達到24小時污染預警(時間序列分析)及污染溯源(地理空間分析)成效,以實際案例驗證水質感測物聯網快速反應支援系統之有效性,成功發現過往無法察覺之排放源及污染事件。


    Previously, environmental monitoring and related data analysis had been carried out via deployment of large-scale equipment or manual sampling, as well as analysis with equipment at standard laboratory. It was a time- and manpower-consuming process incapable of timely grasping of polluting characteristics for source tracing. Therefore, since the turn of the 21st century, government agencies and research institutions in some countries have started to employ IoT (Internet of Things) and low-cost sensing devices in monitoring environmental pollution around the clock with better time and data resolution. Initially, the approach was ridden with multiple problems such as unstable sensing-device quality, high deployment cost, and inadequate maintenance causing wasted massive collected data which were not analyzed and utilized properly.
    To rectify the flaws, this study puts forth a complete "norms on deployment of water-quality sensing IoT and data application" in reference to "toxic accident decision support system (TDSS) and foreign cases for the deployment and applications of low-cost sensors, based on the scenario of polluting incidents and responses in Taiwan. The norms cover sensing devices' quality assurance and control, along with a cloud-end calibration model, optimized deployment siting, low-cost maintenance, continuing water-quality monitoring and alerting model, and early-warning rules and automatic determination for environmental or device abnormality. The norms set alerting rules and call for automatic determination of environmental or device abnormality, as well as rapid polluting-source tracing, via utilization of "suspicious polluting source analytical model" and cross-region data, before sending alarm via IoT and triggering auditing procedure. Another feature is "polluting hot area analytical model," capable of forecasting pollution-affected area in the next several hours, as basis for emergency response and prevention of pollution spread.
    This study selected Taoyuan City as the verification field, where 100 small water-quality monitoring devices were deployed, for testing the effectiveness of the total solution of the "Water quality sensing IoT rapid response support system." The results show that the measurement range and accuracy/error of the pH, conductivity and temperature sensor chip can be controlled within pH3–pH12 ± pH0.5 (R2=0.978), 90 - 10500μS/cm±13.5% (R2=0.990), and 10 - 85℃ ± 0.5℃ (R2=0.990). The COD and SS measurement ranges of the COD+SS sensor module can reach 0.1-300 mg/L and 0.1-100 mg/L respectively, with precision and accuracy of 10% and 40%. The IoT-based network is capable of pollution alerting (time-sequence analysis) and source tracing (geospatial analysis) within 24 hours for water body, industrial-area drainage channel, and agricultural irrigation channel. The network succeeded in detecting three polluting cases and tracing their sources timely, outperforming previous systems.

    摘要 I 目錄 V 表目錄 VI 圖目錄 VII 第一章 研究緣起與目的 1 1.1 研究緣起 1 1.2 研究目的 2 第二章 文獻探討與分析 3 2.1 毒災應變決策支援系統 3 2.2 空品物聯網決策支援模式 6 2.3 水質監測及物聯網應用分析 16 第三章 水質感測物聯網設備及數據品保品管 22 3.1 低成本水質監測設備 23 3.2 感測數據品保品管 47 第四章 物聯網布建策略及快速反應支援系統 54 4.1 環境感測物聯網布建策略 54 4.2 快速反應支援系統 61 第五章 驗證案例-桃園市布建應用 73 5.1 實地驗證 73 5.2 決策支援模式之修正 84 5.3 布建點位修正 87 第六章 結論與建議 89 第七章 參考文獻 92

    1.Adu-Manu, K. S., Tapparello, C., Heinzelman, W., Katsriku, F. A., and Abdulai, J. D., “Water quality monitoring using wireless sensor networks: current trends and future research directions”, ACM Transactions on Sensor Networks, 13, (2017).
    2.Aziz, B., Muchtar, E., and Hariadi, F. I., “Human-machine interface for water quality monitoring system of white-legged shrimp pond”, International Symposium on Electronics and Smart Devices (ISESD), Bandung, Indonesia (2016).
    3.Baiqian, S., and Stephen C., “A low-cost water depth and electrical conductivity sensor for detecting inputs into urban stormwater networks”, Sensors, 21, 3056, (2021).
    4.Banna, M. H., Imran, S., Francisque, A., Najjaran, H., Sadiq, R., Rodriguez, M., and Hoorfar, M., “Online drinking water quality monitoring: review on available and emerging technologies”, Critical Reviews in Environmental Science and Technology, 44, 1370–1421, (2014).
    5.California Department of Transportation., “Construction Site Monitoring Program Guidance Manual”, Sacramento, USA, (2013).
    6.Chen, Y., and Han, D., “Water quality monitoring in smart city: A pilot project”, Automation in Construction, 89, 307-316, (2018).
    7.Cheng, C.L., and Liao, W.J., “Current situation and sustainability of water resource in Taiwan”, Asian Water Saving Council, Japan, (2011).
    8.Cloete, N. A., Malekian, R., and Nair, L., “Design of smart sensors for real-time water quality monitoring”, IEEE Access, 4, 3975-3990, (2016).
    9.Dong, J., Wang, G., Yan, H., and Xu, J., “A survey of smart water quality monitoring system”, Environmental Science and Pollution Research, 22, 4893–4906, (2015).
    10.Encinas, C., Ruiz, E., Cortez, J., and Espinoza, A., “Design and implementation of a distributed IoT system for the monitoring of water quality in aquaculture”, Wireless Telecommunications Symposium (WTS), Chicago, Illinois, USA, (2017).
    11.Gubbi, J., Buyya, R., Marusic, S., and Palaniswami, M., “Internet of Things (IoT): A vision, architectural elements, and future directions”, Future Generation Computer Systems, 29, 1645-1660, (2013).
    12.Ian, J., Branislav, V., and Richard, G., “A “toolbox” for biological and chemical monitoring requirements for the European Union’s Water Framework Directive”, Talanta, 69, 302-322, (2006).
    13.Jothimani, A., Edward, A. S., Gowthem, k. M., and Karthikeyan, R., “Implementation of smart sensor interface network for water quality monitoring in industry using IoT”, Indian Journal of Science and Technology, 10, 1-7, (2017).
    14.Lambrou, T. P., Anastasiou, C. C., Panayiotou, C. G., and Polycarpou, M. M., “A low-cost sensor network for real-time monitoring and contamination detection in drinking water distribution systems”, IEEE Sensors Journal, 14, 2765-2772, (2014).
    15.Missouri Stream Team., “Introduction to volunteer water quality monitoring”, Missouri Stream Team, Jefferson City, Missouri, USA (2018).
    16.Niswar, M., Wainalang, S., Ilham, A. A., Zainuddin, Z., Fujaya, Y., Muslimin, Z., Paundu, A. W., Kashihara, S., and Fall, D., “IoT-based water quality monitoring system for soft-shell crab farming”, International Conference on Internet of Things and Intelligence System (IoTaIS), Bali, Indonesia, (2018).
    17.Patel, K. K., and Patel, S. M., “Internet of Things-IOT: definition, characteristics, architecture, enabling technologies, application & future challenges”, International Journal of Engineering Science and Computing, 6, 6122-6131, (2016).
    18.Qin, Y., Alam, A. U., Pan, S., Howlader, M. M.R., Ghosh, R., Hu, N. X., Jin, H., Dong, S., Chen, C. H., and Deen, M. J., “Integrated water quality monitoring system with pH, free chlorine and temperature sensors”, Sensors and Actuators B: Chemical, 255, 718-791, (2018).
    19.Ramesh, M. V., Nibi, K. V., Mohan, R., Kurup, A., Aiswarya, A., Arsha, A., and Sarang, P. R., “Water quality monitoring and waste management using IoT”, IEEE Global Humanitarian Technology Conference (GHTC), San Jose, CA, USA, (2017).
    20.Steve A., and Matt U., “Online source water quality monitoring”, USEPA Water Security Division, (2016).
    21.Sumithra, Dr. A., Ida, J. J., Karthika, K., and Gavaskar, Dr. S., “A smart environmental monitoring system using internet of things”, International Journal of Scientific Engineering and Applied Science (IJSEAS), 2, (2016).
    22.Sukaridhoto, S., Pramadihanto, D., Taufiqurrahman, Alif, M., Yuwono, A., and Funabiki, N., “A design of radio-controlled submarine modification for river water quality monitoring”, International Seminar on Intelligent Technology and Its Applications, Surabaya, Indonesia, (2015).
    23.Su-Young Park., Jung Hyun Choi., Sookyun Wang., and Seok Soon Park., “Design of a water quality monitoring network in a large river system using the genetic algorithm”, Ecolgical Modelling, 199, 289–297, (2006).
    24.U.S. EPA and NOAA., “ALOHA User’s Manual”, (2007).
    25.U.S. Geological Survey., “Guidelines and standard procedures for continuous water-quality monitors: Station Operation, Record Computation, and Data Reporting”, (2006).
    26.U.S. Geological Survey., “Guidelines and standard procedures for continuous water-quality monitors: Site Selection, Field Operation, Calibration, Record Computation, and Reporting”, (2000).
    27.UN water., “Status report on integrated water resources management and water efficiency plans”, Prepared for the 16th session of the Commission on Sustainable Development (2008).
    28.Vanoirbeek, C., Rekik, Y.A., Karacapilidis, N., Aboukhaled, O., Ebel, N., and Vader, J.P., “A web-based information and decision support system for appropriateness in medicine”, Knowledge-Based System, 13, 11-19 (2000).
    29.Watson, H.J., Houdeshel, G. and JR, R.K.R., “Building executive information system and other decision support applications”, John Wiley & Sons Publisher (1997).
    30.Webber, J., and Joiner, J., “Continuous water-quality monitor deployment techniques: maximizing data quality and minimizing site maintenance”, Water-quality monitors deployed on the James River at Cartersville, VA (USGS 0203500), (2018).
    31.Y. Liu., B.H. Zheng., Q. Fu., L.J. Wang., and M. Wang., “The selection of monitoring indicators for river water quality assessment”, Proc Environ Sci, 13,129–139, (2012).
    32.Yick, J., Mukherjee, B., and Ghosal, D., “Wireless sensor network survey”, Computer Networks, 52, 2292-2330, (2008).
    33.Zakaria, Y., and Michael, K., “An integrated cloud-based wireless wensor network for monitoring industrial wastewater discharged into water sources”, Wireless Sensor Network, 9, 290-301, (2017).
    34.Zografos, K.G., Vasilakis, G.M., and Giannouli, I.M., “Methodological framework for developing decision support systems (DSS) for hazardous materials emergency response operations”, Journal of Hazardous Materials, 7;71-103, (2000).
    35.Zografos, K.G., Androutsopoulos, K.N., and Vasilakis, G.M., “A real-time decision support system for roadway network incident response logistics”, Transportation Research, 10,1-18, (2002).
    36.武延坤. 陳益清., “水質監測技術現有問題分析及物聯網應用框架”,中國給水排水, 22, (2012).
    37.潘浙楠. “多變量環保管制圖模式之設計與建構”,行政院國家科學委員會專題研究計畫, (2002).
    38.環境部., “環境感測物聯網整合推動及專案管理計畫”, 前瞻專案計畫, (2022).

    QR CODE
    :::