跳到主要內容

簡易檢索 / 詳目顯示

研究生: 沈家賢
Jia-sian Shen
論文名稱: 半導體量子點之穿隧電流
Tunneling current through a single semiconductor quantum dot
指導教授: 郭明庭
Ming-ting Kuo
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 96
語文別: 中文
論文頁數: 43
中文關鍵詞: 量子點格林函數單電子電晶體
外文關鍵詞: quantum dots, single-electron transistors, Green''s function
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文是理論探討流經半導體量子點的穿隧電流,我們使用了兩個能階的安德森模型,來模擬這個系統。穿隧電流分別顯示出庫倫階梯與庫倫振盪的關係,相對於源極-汲極電壓與閘極電壓。穿隧電流頻譜的結構很容易被溫度所抑制。對四重簡併態,穿隧電流不會呈現雙穩態電流的現象。


    Is this thesis we theoretically study the tunneling current through a semiconductor quantum dot . The Anderson model with two energy levels is used to simulate our studied system . Tunneling current show , respectively , the staircase and oscillatory behaviers with respect to the sourse-drain voltage and the gate voltage . The structure of current spectrum is easily suppressed by temperature . For the four-fold degenerate state , tunneling current did not exhibit bistable current .

    論文摘要 ....................................................................i Abstract ...................................................................ii 誌謝 ......................................................................iii 目錄 .......................................................................iv 圖目錄 .....................................................................vi 第一章 導論 .................................................................1 1.1 量子點簡介 ..........................................................1 1.2 單電子電晶體的簡介 ..................................................3 1.2.1 單電子電晶體的基本原理 ........................................3 1.2.2 單電子電晶體的應用 ............................................4 第二章 系統模型及原理 .......................................................6 2.1 簡介 ................................................................6 2.2 單能階系統之格林函數 ................................................9 2.3 二能階系統之格林函數 ...............................................11 第三章 單能階系統之穿隧電流 ................................................12 3.1 溫度變化下之穿隧電流 ...............................................12 3.2 參數變化對穿隧電流的影響 ...........................................15 3.2.1 穿隧率的影響 .................................................15 3.2.2 共振態的影響 .................................................15 3.2.3 電子間交互作用力的影響 .......................................16 3.3 非對稱穿隧率之穿隧電流 .............................................18 第四章 二能階系統之穿隧電流 ................................................20 4.1 溫度變化下之穿隧電流 ...............................................20 4.1.1 外加電壓與電子佔據的機率及穿隧電流之關係 .....................20 4.1.2 閘極電壓與電子佔據的機率及穿隧電流之關係 .....................22 4.2 四重狀態之穿隧電流 .................................................25 4.2.1 簡介 .........................................................25 4.2.2 外加電壓與穿隧電流之關係 .....................................26 4.2.3 閘極電壓與電子佔據的機率及穿隧電流之關係 .....................27 4.2.4 非對稱穿隧率之穿隧電流與閘極電壓的關係 .......................29 第五章 結論 ................................................................30 參考文獻 ...................................................................31 附錄 A .....................................................................33

    [1] Paul Hrrison Quantum Wells, Wires and Dots, “Theoretical and Computational Physics” (1999).
    [2] Alivisatos A. P., J. Phys. Chem. 100, 13226 (1996).
    [3] D. V. Averin and K. K. Likharev, “Coulomb blockade of single-electron tunneling, and coherent oscillations in small tunnel junctions”, Low Temp. Phys. 62, 345 (1986).
    [4] T. A. Fulton and G. J. Dolan, “Observation of single-electron charging effects in small tunnel junctions”, Phys. Rev. Lett. 59, 109 (1987).
    [5] Wei-Ting Lai, “Physical Properties of Ge Quantum Dots Formed by Selective Oxidation of Si1-xGex-on-insulator” (2005).
    [6] D. Goldhabar-Gordon, H. Shtrikman, D. Mahalu, D.Abusch-Magder, U. Meirav and M. A. Kastner: Nature 391 156 (1998).
    [7] S. M. Cronenwett, T. H. Oosterkamp and L. P.Kouwenhoven: Science 281 540 (1998).
    [8] J. H. F. Scott-Thomas, S. B. Field, M. A. Kastner, H. I. Smith and D. A. Antoniadis, Phys. Rev. Lett. 62. 583 (1989).
    [9] U. Meirav, M. A. Kastner and S. J. Wind, Phys. Rev. Lett. 65 771 (1990).
    [10] A. P. Jauho, N. S. Wingreen and Y. Meir, Phys. Rev. B 50 5528 (1994).
    [11] Y. Meir, N. S. Wingreen and P. A. Lee, Phys. Rev. Lett. 70 2601 (1993).
    [12] H. Haug and A. P. Jauho, “Quantum Kinetics in Transport and Optics of Semiconductors” (Springer, Heidelberg, 1996).
    [13] L. Zhuang, L. Guo and S. Y. Chou, Appl. Phys. Lett. 72 1205 (1998).
    [14] M. Saitoh, N. Takahashi, H. Ishikuro and T. Hiramoto, Jpn. J. Appl. Phys. 40 2010 (2001).
    [15] Y. T. Tan, T. Kamiya, D. Zak and H. Ahmed, J. Appl. Phys. 94 633 (2003).
    [16] P. W. Li, W. M. Liao, D. M. T. Kuo, S. W. Lin, P. S. Chen, S. C. Lu and M. J. Tsai, Appl. Phys. Lett. 85 1532 (2004).
    [17] David M. T. Kuo, “Effect of interlevel Coulomb interactions on the tunneling current through a single quantum dot”, Physica E, 27, 355 (2005).
    [18] Y. Meir, N.S. Wingreen and P.A. Lee, Phys. Rev. Lett. 70, 2601 (1993).
    [19] L.V. Keldysh: Zh. Eksp. Teor. Fiz. 47 1515 (1964) [Sov.Phys. JETP 20 1018 (1965)].
    [20] David M. T. Kuo and Y. C. Chang, “Electron tunneling rate in quantum dots under a uniform electric field”, Phys. Rev. B, 61, 11051 (2000).
    [21] David M. T. Kuo and P.W. Li, “Tunneling Current Through a Single Germanium Quantum Dot”. Jpn. J. Appl. Phys. 44, 6429 (2005).
    [22] V. N. Ermakov, Physica E 8 99 (2000).
    [23] A. S. Alexandrov, A. M. Bratkovsky and R. S. Williams, Phys. Rev. B 67 075301 (2003).
    [24] M. S. Chang, “Physical Properties of Ge Quantum Dots Formed by Selective Oxidation of Si1-xGex-on-insulator” (2007).
    [25] David M. T. Kuo and Y.C. Chang, “ Tunneling current spectroscopy of nanostructure of junction involving multiple energy levels”,Physical Review Letters 99. 086803 (2007).

    QR CODE
    :::