| 研究生: |
杜元輔 Yuan-Fu Tu |
|---|---|
| 論文名稱: |
球體在流體中運動之動態雙向耦合模擬 Two-Way Coupled Simulation of Fluid/Sphere Interaction |
| 指導教授: |
朱佳仁
Chia-Ren Chu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | 流固雙向耦合 、計算流體動力學模式 、大渦模式 |
| 外文關鍵詞: | Fluid/Solid Interaction, Sphere |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究結合流固雙向動態耦合模式、牛頓力學和顆粒碰撞模式描述球體在黏性流體中的運動,球體周遭流場採用大渦模式計算,共探討了三種不同狀況下球體顆粒與流體之間的互制現象,模擬結果並與實驗進行驗證及分析。結果顯示:(1)比流體密度較小之浮球顆粒墜入水中再浮起的過程中、附加質量係數CA = 0.50與雷諾數Re或球體密度無關;(2)在雙球自由墜落的過程中,當雙球的初始間隙小於0.75D時,因為側向力不對稱的緣故,雙球落下的軌跡會呈現S字型方式落下;(3)球體沿斜坡滑落入水中,碰撞水中另一顆球體,兩球之間的碰撞力採用Chen (2014)之線性碰撞模式,滾動的摩擦係數CR = 0.25,模擬結果十分接近實驗結果,亦即本研究所發展之流固雙向動態耦合模式可模擬球體在水中的墜落、滾動及碰撞。
This study integrates a large eddy simulation (LES) model and a moving-solid algorithm to simulate the falling process of spheres in the water. The simulation results are verified by the results of laboratory experiments and the analytic solution. The numerical model then is utilized to investigate three different flow conditions: one buoyant sphere falling into water; the interaction of two free-falling spheres; the collision of two spheres in the water. The results revealed that the added mass coefficient CA = 0.50 is independent of the Reynolds number and the density ratio of the sphere to the fluid. The interaction of two free-falling spheres is influenced by the initial gap between two spheres. The falling trajectories of the spheres is like a S shape when the initial gap is smaller than 0.75D, due to asymmetric pressure on the sphere surface. In the collision case, the collision forces between two moving spheres is simulated by the linearized collision model of Chen (2014). The good agreement between the experimental observation and numerical simulation demonstrates that the present numerical model can be used to simulate the falling, rolling and collision of spheres in viscous fluid.
[1] Aristoff, J.M., Truscott, T.T., Techet, A.H., and Bush, J.W.M., 2010. The water entry of decelerating spheres. Physics of Fluids, 22, 032102.
[2] Blevins, R.D., 1984. Applied Fluid Dynamics Handbook. Van Nostrand Reinhold Co., New York, U.S.A.
[3] Cabot, W., Moin, P., 2000. Approximate wall boundary conditions in the large eddy simulation of high Reynolds number flow. Flow Turbulence and Combustion, 63, 269-291.
[4] Chen, X.-M., (2014) Development and Verification of the Normal and Tangential Equivalent Linear Contact Springs of Egg Shape Particles. Master Thesis of National Central University, Department of Civil Engineering.
[5] Chu, C.-R., Chung, C.-H., Wu, T.-R., Wang, C.-Y. (2016) Numerical analysis of free surface flow over a submerged rectangular bridge deck. J. of Hydraulic Eng. ASCE. 142 (12), 10.1061/(ASCE)HY.1943-7900.0001177.
[6] Chu, C.-R., Lin, Y.-A., Wu, T.-R., Wang, C.-Y. (2018) Hydrodynamic force on a cirular cylinder beneath the water surface. Computers and Fluids. 172, 10.1016/j.compfluid.2018.05.032.
[7] Clift, R., Grace, J.R. and Weber, M.E. 1978. Bubbles, Drops and Particles, Academic Press, p.380.
[8] Deardorff, J.W., 1970. A numerical study of three dimensional turbulent channel flow at large Reynolds numbers. J. Fluid Mech. 41, 453-480.
[9] DeLong, M., 1997. Two examples of the impact of partitioning with Chaco and Metis on the convergence of additive-Schwarz preconditioned FGMRES. Technical Report LA-UR-97-4181, Los Alamos National Laboratory, New Mexico, U.S.A.
[10] Odar, F., Hamilton, W. S., 1964, Forces on a sphere accelerating in a viscous fluid, J. Fluid Mech. 18, 302-314.
[11] Hertz, H. 1896. Über die berührung fester elastischer Körper (On the contact of rigid elastic solids). In: Miscellaneous Papers. Jones and Schott, Editors, J. reine und angewandte Mathematik 92, Macmillan, London, p. 156 English translation: Hertz, H.
[12] Hertz, H. R., 1882, Ueber die Beruehrung elastischer Koerper (On Contact Between Elastic Bodies), in Gesammelte Werke (Collected Works), Vol. 1, Leipzig, Germany, 1895.
[13] Hirt, C.W., Nichols, B.D., 1981. Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput Phys. 39(1), 201-225.
[14] Hoerner, S.F., 1965. Fluid Dynamic Drag: Theoretical, Experimental and Statistical Information. Hoerner Fluid Dynamics, New Jersey, U.S.A.
[15] Hsu, H.-C., Capart, H., 2007. Enhanced upswing in immersed collisions of tethered spheres. Physics of Fluids, 19, 101701.
[16] Jan, C.-D., Chen, J.-C. 1997. Movements of a sphere rolling down an inclined plane. J. of Hydraulic Research, 35, 689-706.
[17] Martino, R., Paterson, A. Piva, M.F. 2015. Experimental and analytical study of the motion of a sphere falling along an inclined plane in still water. Powder Technology, 283 (2015), 227-233.
[18] O’Neil, J., Meneveau, C., 1997. Subgrid-scale stresses and their modelling in a turbulent plane wake. J. Fluid Mech. 349, 253-293.
[19] Pope, S.B., 2000. Turbulent Flows, Cambridge University Press. Cambridge, U.K.
[20] Smagorinsky, J., 1963. General circulation experiments with the primitive equations: I. The basic experiment. Mon. Weather Review, 91, 99-164.
[21] Wu, T.-R., Chu, C.-R., Huang, C.-J., Wang, C.-Y., Chien, S.-Y., Chen, M.-Z., 2014. A two-way coupled simulation of moving solids in free-surface flows. Computers and Fluids, 100, 347-355.
[22] Yang, F.-L., Hunt, M.L., 2006. Dynamics of particle-particle collisions in a viscous liquid. Physics of Fluids, 18, 121506.