跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳敬智
Ching-Chin Chen
論文名稱: 數值模擬比較多晶矽氧雜質分佈與固液界面形狀關係
Relationship between distribution of oxygen and melt-crystal interface shape by numerical simulations
指導教授: 陳志臣
Jyh-Chen Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
畢業學年度: 97
語文別: 中文
論文頁數: 68
中文關鍵詞: 晶體生長直接固化法雜質
外文關鍵詞: Impurity, Directional Solidification System, Crystal Growth
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 多晶矽是太陽能電池的主要原料之一。而氧在直接固化法生長多晶矽晶碇中是一個重要的雜質,會影響太陽能電池之效率與晶片強度。氧雜質之傳輸機制為(1)坩堝壁高溫放出氧(2)自由表面處氣化(3)固液界面上發生偏析現象。為了控制氧雜質於長晶過程中之分佈,本研究利用數值方法模擬修改後的直接固化法長晶爐,間接改變固液界面形狀、流場型態及氧雜質分佈。
    結果顯示,DSS長晶爐修改前,其流場型主要有兩個渦旋,一個靠近自由表面,另一個靠近固液界面。而氧雜質主要累積在中心軸之區域。DSS長晶爐修改後的固液界面形狀較原始長晶爐之固液界面形狀凸向熔湯,導致流場分離為兩個渦旋,一個靠近坩堝壁,另一個靠近中心軸。最後造成氧雜質會集中於角落處。


    Multi-crystalline silicon ingot is a major material for solar cells. Oxygen, one of the most important impurities in directional solidification system (DSS), influences the efficient of solar cells and hardness of chip. Transport of oxygen includes (1) dissolve from crucible (2) disappear from free surface (3) segregation in melt-crystal interface. We modify the furnace’s structure of DSS to change the melt-crystal interface shape, type of flow field and distribution of oxygen in the solidification process by numerical analysis.
    The result show that there are two vortices, one is near the free surface and one is near the melt-crystal interface, make the high oxygen concentrate on the center zone mainly before modify the furnace of DSS. There are two vortices, one is near the center and one is near the crucible wall, separate from one vortex and high oxygen concentrates on the corner between the melt-crystal interface and crucible wall due to the shape of melt-crystal interface of modified DSS furnace more convex than the shape of melt-crystal interface of standard DSS furnace
    .

    目錄 摘要....................................I Abstract ..............................II 目錄..................................III 圖目錄..................................V 表目錄...............................VIII 符號說明...............................IX 第一章、 導論...........................1 第二章、 計算方法.......................5 2.1 物理模型............................5 2.1.1 基本假設......................5 2.1.2 統御方程式....................6 2.1.3 邊界條件......................7 2.1.4無因次參數.....................9 2.2 k-ε紊流模式........................10 2.3 偏析現象...........................11 2.4 氧雜質之傳輸機制...................12 2.5 固液界面形狀.......................16 2.5 數值方法...........................17 2.5.1 有限元素法...................17 2.5.2 形狀函數.....................17 2.5.3 收斂條件.....................18 2.5.4 求解流程.....................18 第三章、 結果與討論....................28 3.1 網格測試...........................28 3.2 數值驗證...........................28 3.3 標準長晶爐整體溫度分佈.............28 3.3.1 熔湯熱流場分析...............29 3.3.2 氧雜質濃度分佈...............31 3.4 修改長晶爐整體溫度分佈.............32 3.4.1 熔湯熱流場分析...............33 3.4.2 氧雜質濃度分佈...............34 3.4.3標準DSS長晶爐與修改DSS長晶爐之氧雜質比較 ...................................34 第四章、 結論..........................63 參考文獻...............................65

    參考文獻
    1. Sho Hisamatsu, Hitoshi Matsuo, Satoshi Nakano, Koichi Kakimoto, ”Numerical analysis of the formation of Si3N4 and Si2N2O during a directional solidification process in multicrystalline silicon for solar cells”, Journal of Crystal Growth, Vol. 311, (2009), pp. 2615-2620
    2. Hitoshi Matsuo, R. Bairava Ganesh, Satoshi Nakano, Lijun Liu, Koji Arafune, Yoshio Ohshita, Masafumi Yamaguchi, Koichi Kakimoto, “Effect of crucible rotation on oxygen concentration during unidirectional solidification process of multicrystalline silicon for solar cells”, Journal of Crystal Growth, Vol. 311, (2009), pp. 1123-1128
    3. Lijun Liu, Satoshi Nakano, Koichi Kakimoto, “ Carbon concentration and particle precipitation during directional solidification of multicrystalline silicon for solar cells, Journal of Crystal Growth, Vol. 310, (2008), pp. 2192-2197
    4. Hitoshi Matsuo, R. Bairava Ganesh, Satoshi Nakano, Lijun Liu, Yoshihiro Kangawa, Koji Arafune, Yoshio Ohshita, Masafumi Yamaguchi, Koichi Kakimoto, “Thermodynamical analysis of oxygen incorporation from a quarz crucible during solidification of multicrystalline silicon for solar cell”, Journal of Crystal Growth, Vol. 310, (2008), pp. 4666-4671
    5. D. Vizman, J. Friedrich, G. Mueller, “3D time-dependent numerical study of the influence of the melt flow on the inter face shape in a silicon ingot casting process”, Journal of Crystal Growth, Vol. 303, (2007), pp. 231-235 (2007)
    6. L. J. Geerligs, “Impact of defect distribution and impurities on multicrystalline silicon cell efficiency”, 3rd World Conference on Photovoltaic Energy Conversion, May 11-18, 2003 Osaka, Japan
    7. Zhenqiang Xi, Jun Tang, Hai Deng, Deren Yang, Duanlin Que, ”A model for distribution of oxygen in multicrystalline silicon ingot grown by directional solidification”, Solar Energy Material & Solar Cells, Vol. 91, (2007), pp. 1688-1691
    8. T. Saitoh, X. Wang , H. Hashigami, T. Abe, T. Igarashi, S. Glunz, S. Rein, W. Wettling, I. Yamasaki, H. Sawai, H. Ohtuka, T. Warabisako, “Suppression of light degradation of carrier lifetimes in low-resistivity CZ-Si solar cells”, Solar Energy Materials &Solar Cells, Vol. 65, (2001), pp. 277-285
    9. D. T. J. Hurle, “Handbook of Crystal Growth 2”
    10. A. D. Smirnov, V. V. Kalaev, “Development of oxygen transport model in Czochralski growth of silicon crystals”, Journal of Crystal Growth, Vol. 310, (2008), pp. 2970-2976
    11. K. Kakimoto, H. Ozoe, “Oxygen distribution at a solid-liquid interface of silicon under transverse magnetic field”, Journal of Crystal Growth, Vol. 212, (2000), pp. 429-437
    12. T. Zhang, G. X. Wang, H. Zhang, F. Ladeinde, V.Prasad, “Turbulent transport of oxygen in the Czochralski growth of large silicon crystals” Journal of Crystal Growth, Vol. 198/199, (1999), pp. 141-146
    13. Mingwei Li, Yourong Li, Nobuyuki Imaishi, Takao Tsukada, “Global simulation of a silicon Czochralski furnace”, Journal of Crystal Growth, Vol. 234, (2002), pp. 32-46
    14. S. Nakano, L. J. Liu, X. J. Chen, H. Matsuo, K. Kakimoto, ”Effect of crucible rotation on oxygen concentration in the polycrystalline silicon grown by unidirectional solidification method”, Journal of Crystal Growth, (2008)
    15. Lijun Liu, Satoshi Nakano, Koichi Kakimoto, “Dynamic simulation of temperature and iron distributions in a casting process for crystalline silicon solar cells with a global model”, Journal of Crystal Growth, Vol. 292, (2006), pp. 515-518
    16. D. Franke, T. Rettelbach, C. Habler, W. Koch, A.Muller, “Silicon ingot casting: process development by numerical simulations”, Solar Energy Matericals & Solar Cells, Vol. 72, (2002), pp. 83-92
    17. Bei Wu, Nathan Stoddard, Ronghui Ma, Roger Clark, “Bulk multicrystalline silicon growth for photovoltaic (PV) application”, Journal of Crystal Growth, Vol. 310, (2008), pp. 2178-2184
    18. A. T. Kuliev, N. V. Durneu, V. V. Kalaev, “Analysis of 3D unsteady melt flow and crystallization front geometry during a casting process for silicon solar cells”, Journal of Crystal Growth, Vol. 303, (2007), pp. 236-240
    19. Hiroaki Miyazawa, Lijun Liu, Sho Hisamatsu, Koichi Kakimoto, “Numerical analysis of the influence of tilt of crucibles on interface shape and fields of temperature and velocity in the unidirectional solidification process”, Journal of Crystal Growth, Vol. 310, (2008), pp. 1034-1039
    20. Y. Delannoy, F. Barvinschi, T. Duffar, “3D dynamic mesh numerical model for multi-crystalline silicon furnaces”, Journal of Crystal Growth, Vol. 303, (2007), pp. 170-174
    21. 鄧應揚, “多晶矽太陽能電池晶錠固化生長之熱流場研究”, (2008)
    22. Ying-Yang Teng, Jyh-Chen Chen, Chung-Wei Lu, V.V. Kalaev and S. E. Demina. ‘’Crystalline front control of growing multicrystalline si ingots during the directional solidification process. 18th International photovoltaic Science and Engineering. Kolkata, India, 2009.
    23. Bradley M. Carpenter, G. M. Homsy, “Combined buoyant-thermocapillary flow in a cavity”, J. Fluid Mech., Vol. 207, (1989), pp. 121-132

    QR CODE
    :::