跳到主要內容

簡易檢索 / 詳目顯示

研究生: 劉弘凱
Hong-Kai Liu
論文名稱: 砷化銦/銻化鋁高電子遷移率場效電晶體之次微米元件製程改善與元件衰化機構分析
Development of Submicron Device Processes and Analysis of Device Degradation Mechanisms for InAs/AlSb HEMTs
指導教授: 蔡曜聰
Yao-Tsung Tsai
林恒光
Heng-Kuang Lin
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 100
語文別: 中文
論文頁數: 113
中文關鍵詞: 銻化鋁衰化砷化銦高電子遷移率電晶體
外文關鍵詞: AlSb, InAs, HEMT, degradation
相關次數: 點閱:24下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用砷化銦材料優異的高電子遷移率及優異電子飽和速度特性,發展次微米電子束微影閘極之低功率高速的異質接面場效電晶體(HFET)。我們也發展了可將汲極與源極的距離縮小的製程。我們觀察到銻化物元件隨著擺放時間的拉長產生了衰化的現象,針對此衰化現象我們也進行了研究。
    我們利用改變光阻及控制顯影時間的方式,已可將汲極與源極之距離縮小至1μm。T型閘極長度0.2μm,汲極與源極的距離為1.5μm的元件特性於汲極偏壓VDS=0.4V下,其汲極飽和電流為IDSS=733mA/mm及轉導增益為gm=1,520mS/mm,電流增益截止頻率fT=105GHz。在研究元件衰化現象方面,我們觀察到了和剛製作完成的元件性能相比,元件在經過六個月後的出現了飽和電流增加、轉導增益上升、閘極漏電流變小、以及次臨限電壓位移的現象。我們利用了脈波電流-電壓量測(Pulse-IV)、X光能量色散分析儀(Energy-Dispersive Analysis with X-ray, EDAX)以及小訊號模型來進行分析,發現了元件在經過六個月後,磊晶會和大氣的氧元素發生反應,造成元件的衰化。


    We successfully developed low-power and high-speed e-beam submicron gate InAs-channel heterpjunction field-effect transistors in the thesis. A device process flow which includes source-to-drain spacing reduction and e-beam submicron T-gate lithography process was developed. Device degradation mechanism was also studied.
    The spacing between source and drain can be decreased to 0.6μm by controlling development and baking times. In a HEMT device with a gate length of 0.2μm and a source-to-drain spacing of 1.5μm, IDSS=733mA/mm, gm=1520mS/mm, and the cut-off frequency fT=105GHz at the VDS=0.4V were obtained. Comparing device performance obtained at different times after device fabrication, we found that IDSS and gm increased, IG decreased, and Vth decreased with time. Pulsed I-V, EDAX, and small-signal model analysis suggested that the degradation behavior was very possibly due to the epitaxial oxidation in surface layers.

    摘要 I Abstract II 誌謝 III 圖目錄 VII 表目錄 XIII 第一章 導論 1 1-1 砷化銦/銻化鋁之高速電子遷移率電晶體發展現況 1 1-2 銻化物元件衰化現象之研究現況 7 1-3 論文架構 8 第二章 磊晶結構設計與次微米元件製程發展 10 2-1 前言 10 2-2 磊晶結構設計與材料分析 10 2.2.1 InAs/In0.5Al0.5As保護層磊晶結構(磊晶481) 10 2.2.2 InAs/In0.5Al0.5As保護層磊晶結構(磊晶650) 13 2.2.3 InAs/In0.5Al0.5As保護層磊晶結構(磊晶766) 20 2.2.4 InAs/In0.45Al0.55As保護層磊晶結構(磊晶767) 23 2.2.5 In0.2Al0.8Sb阻障層,InAs/In0.7Al0.3As保護層磊晶結構(磊晶730) 26 2.2.6 In0.2Al0.8Sb阻障層,InAs保護層磊晶結構(磊晶738) 29 2-3 次微米元件之製程發展 32 2.3.1 歐姆接觸製程發展 32 2.3.2 次微米T型閘極製程的發展 35 2-4 次微米元件之製程發展 39 2.4.1 標準次微米T型閘極元件製作 39 2.4.2 覆蓋鈍化層製程之次微米T型閘極製作流程 41 2-5 結論 44 第三章 砷化銦/銻化鋁HFET之次微米元件特性 45 3-1 前言 45 3-2 InAs/In0.5Al0.5As覆蓋層之次微米元件性能 45 3.2.1 製程前覆蓋鈍化層元件 45 3.2.2 製程前不覆蓋鈍化層之次微米元件 54 3-3 不同磊晶保護層之元件性能 64 3.3.1 InAs/In0.5Al0.5As保護層磊晶結構(磊晶686) 64 3.3.2 InAs/In0.5Al0.5As保護層磊晶結構(磊晶766) 65 3.3.3 InAs/In0.45Al0.55As保護層磊晶結構(磊晶767) 67 3-4 銻化銦鋁阻障層之元件性能 69 3.4.1 In0.2Al0.8Sb阻障層,InAs/In0.7Al0.3As保護層磊晶結構(磊晶730) 69 3.4.2 In0.2Al0.8Sb阻障層,InAs保護層磊晶結構(磊晶738) 70 3-5 結論 72 第四章 討論 73 4-1 前言 73 4-2 銻化物元件衰化現象之分析 73 4.2.1 銻化物元件衰化現象之電性變化 73 4.2.2 銻化物元件衰化現象之行為分析 75 4.2.3 結論 89 4-3 銻化鋁阻障層替換為銻化銦鋁之元件特性分析 90 4-4 結論 94 第五章 結論與未來發展 95 結論: 95 未來發展: 96 參考文獻 97 附錄1不覆蓋鈍化層之元件製作流程 100 附錄2兩階段覆蓋鈍化層之元件製作流程 104 附錄3閘極後覆蓋鈍化層之元件製作流程 109 附錄4次微米閘極製作流程 113

    [1]L. D. Nguyen, L. E. Larson, U. K. Mishra, “Ultra-high speed modulation-doped field- effect transistors: a tutorial review,” Proc. IEEE, vol. 80, no. 4, pp. 494-518, 1992.
    [2]N. Moll, M. R. Hueschen, and A. Fischer-Colbrie, “Pulsed doped AlGaAs/InGaAs pseudomorphic MODFET’s,” IEEE Trans. Electron Devices, vol. 35, no. 7, pp. 878-886, 1988.
    [3]L. D. Nguyen, A. S. Brown, M. A. Thompson, and L. M. Jelloian, “50 nm self-aligned-gate pseudomorphic AlInAs/GaInAs high electron mobility transistors,” IEEE Trans. Electron Device., vol. 39, no. 9, pp. 2007-2014, 1992.
    [4]K. Shinohara, Y. Yamashita, A. Endoh, I. Watanabe, K. Hikosaka, T. Mimura, S. Hiyamizu and T. Matsui, “550 GHz pseudomorphic InP-HEMTs with reduced source-drain resistance,” in Proc. 61st Device Research Conference, pp. 145-146, 2003.
    [5]J. B. Boos, W. Kruppa, B. R. Bennett, D. Park, S. W. Kirchoefer., “AlSb/InAs HEMTs for low-voltage, high-speed applications,” IEEE Trans. Electron Devices, vol. 45, no. 9, pp. 1869–1875, 1998.
    [6]C. Nguyen, B. Brar, C. R. Bolognesi, J. J. Pekarik, H. Kroemer, and J. H. English, “Growth of InAs/AlSb quantum wells having both high mobilities and high electron concentrations,” J. Electron. Mat., vol. 22, no. 2, pp. 255-258, 1992.
    [7]C. A. Chang, R. Ludeke, L. L. Chang, L. Esaki, “Molecular-beam epitaxy (MBE) of In1-xGaxAs and GaSb1-yAsy,” Appl. Phys. Lett., vol. 31, no. 11, pp. 759–761, 1977.
    [8]M. Yano, Y. Suzuki, T. Ishii, Y. Matsushima, M. Kimata, ”Molecular Beam epitaxy of GaSb and GaSbxAs1-x,” Jpn. J. Appl. Phys., vol. 17, no. 12, pp. 2091–2096, 1978.
    [9]R. Ludeke, “Electronic properties of (100) surfaces of GaSb and InAs and their alloys with GaAs,” IBM J. Res. Dev., vol. 22, no. 3, pp. 304–314, 1978.
    [10]R. Tsai, M. Barsky, J. B. Boss, J. Lee, N. A. Papanicolaou, R.Magno, C. Namba, P. H. Liu, D. Park, R. Grundbacher and A. Gutierrez “Metamorphic AlSb/InAs HEMT for Low-Power, High-Speed Electronics,” in Proc. IEEE GaAs Dig., 2003.
    [11]G. Tuttle, H. Kroemer, J. H. English, “Electron concentrations and mobilities in AlSb/InAs/ AlSb quantum wells,” J. Appl. Phys., vol. 65, no.12, pp. 5239–5242, 1989.
    [12]G. Tuttle, H. Kroemer, J. H. English, “Effects of interface layer sequencing on the transport-properties of InAs/AlSb quantum wells evidence for antisite donors at the InAs/AlSb interface,” J. Appl. Phys., vol.67, no. 6, pp. 3032–3037, 1990.
    [13]C. R. Bolognesi, H. Kroemer, J. H. English, “Well width dependence of electrontransport in molecular-beam epitaxially grown InAs/AlSb quantum-wells,” J. Vac. Sci Technol. B, vol. 10, no. 2, pp. 877-879, 1992.
    [14]R. Venkatasubramanian, D. L. Dorsey, K. Mahalingam, ”Heuristic rules for group IV dopant site selection in III–V compounds,” J. Cryst. Growth. vol. 175, pp. 224–228, 1997.
    [15]Y. Zhao, M. J. Jurkovic, W. I. Wang, “Kink-free characteristics of AlSb/InAs high electron mobility transistors with planar Si doping beneath the channel,” IEEE Trans. Electron Device, vol. 45, no. 1, pp. 341–342, 1998.
    [16]C. R. Bolognesi, M. W. Dvorak, D. H. Chow, “High-transconductance delta-doped InAs/ AlSb HFET’s with ultrathin silicon-doped InAs quantum well donor layer,” IEEE Electron Device Lett. vol. 19, no. 3, pp. 83–85, 1998.
    [17]B. R. Bennett, M. J. Yang, B. V. Shanabrook, J. B. Boos, D. Park, ”Modulation doping of InAs/AlSb quantum wells using remote InAs donor layers,” Appl. Phys. Lett. vol. 72, no. 10, pp. 1193–1195, 1998.
    [18]C. R. Bolognesi, J. E. Bryce, D. H. Chow, “InAs channel heterostructurefield effect transistors with InAs/AISb short-period superlattice barriers,” Appl. Phys. Lett. vol. 69, no. 23, pp.3531–3533, 1996.
    [19]S. Subbanna, G. Tuttle, H. Kroemer, “N-type doping of gallium antimonide and aluminum antimonide grown by molecular-beam epitaxy using lead-telluride as a tellurium dopant source,” J. Electron. Mater. vol. 17, no.4, pp. 297–303, 1988.
    [20]B. R. Bennett, R. Magno, J. B. Boos, W. Kruppa, M. G. Ancona, “Antimonide-based compound semiconductors for electronic devices: A review,” Solid State Electron., vol.49, no. 12, pp. 1875-1895, 2005.
    [21]B. Brar, “Impact ionization in InAs-AlSb heterostructure field-effect-transistors,” Ph.D. dissertation, UC Santa Barbara, 1995.
    [22]Y. C. Chou, J. M. Yang, M. D. Lange, S.S. Tsui, D. L. Leung, C. H. Lin, M. Wojtowicz, A. Oki , “Degradation mechanisms of 0.1 μm AlSb/InAs HEMTS for ultralow-power applications”, Proceedings of International Reliability Physics Symposium, pp. 436 – 440, 2008.
    [23]S. DasGupta, R. A. Reed, R. D. Schrimpf, D. M. Fleetwood, X. Shen, S. T. Pantelides, J. Bergman, and B. Brar, “ Electrical Stress Induced Degradation in InAs-AlSb HEMTs,” Proceedings of IEEE International Reliability Physics Symposium, p. 813, 2010.
    [24]Y. C. Chou, J. M. Yang, C. H. Lin, J. Lee, M. Lange, R. Tsai, P. Nam, M. Nishimoto, A. Gutierrez, H. Quach, R. Lai, D. Farkas, M. Wojtowicz, P. Chin, M. Barsky, and A. Oki, “Manufacturable and Reliable 0.1 μm AlSb/InAs HEMT MMIC Technology for Ultra-Low Power Applications”, Technical Digest of IEEE IMS Symposium, p. 615, 2007.
    [25]Y. C. Chou, D. L. Leung, W-B Luo, J. M. Yang, C. H. Lin, M. Lange, Q. Kan, D. S. Farkas, J. B. Boos, B. R. Bennett, A. L. Gutierrez, D. C. Eng, M. Wojtowicz, A. Oki, and T. Block, “Reliability Evaluation 0.1 μm AlSb/InAs HEMT Low Noise Amplifiers for Ultralow-Power Applications”, Technical Digest of IEEE ROCS Workshop, p. 629, 2005.
    [26]Y. C. Chou, H. Guan, G. P. Li, R. Lai, R Grundbacher, D. Leung, Q. Kan, and A. Oki, “Degradation Analysis of 0.1 μm InP HEMTs Using Low Frequency Noise Characterization”, Technical Digest of 16th international Conference of Indium Phosphide and Related Material, pp. 619-622, 2004
    [27]G. Moschetti, N. Wadefalk, P-A. Nilsson, Y. Roelens, A. Noudeviwa, L. Desplanque, X. Wallart, F. Danneville, G. Dambrine, S. Bollaert, J. Grahn ” InAs/AlSb HEMTs for cryogenic LNAs at ultra-low power dissipation,” Solid State Electron., vol.64, no. 1, pp. 47-53, 2011.
    [28]陳沛煜, “銻化物高電子遷移率場效晶體之閘極微縮製程發展與元件特性研究,” 碩士論文, 國立中央大學, 2011.
    [29]何偉誌, “砷化銦/銻化鋁高電子遷移率場效電晶體之鈍化製程發展與元件特性研究,” 碩士論文, 國立中央大學, 2010

    QR CODE
    :::