跳到主要內容

簡易檢索 / 詳目顯示

研究生: 孫富國
Fu-Kuo Shun
論文名稱: 高分子在二元混合溶劑之二維蒙地卡羅模擬研究
Polymers In a BinaryMixture Solvent:Monte Carlo Simulation StudiesOn A Two Dimensional System
指導教授: 黎璧賢
Pik-Yin Lai
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
畢業學年度: 89
語文別: 中文
論文頁數: 93
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報


  • (or be called monomer). Polymers in binary mixture solvent belong to the class of multicomponent
    system and present a fundamental interest. They show peculiar properties
    near the critical region. The critical point will shift to another point and critical exponents
    also change to another value. The polymer structure and its location has different
    change when the temperature decrease over the critical point gradually.
    In chapter one, Introduction, the history of polymer development will be mentioned
    and the briefly properties of binary mixture are also be mentioned.
    In chapter two, Theoretical and Experimental Backgrounds, the mathematical
    properties will be mentioned to realize some polymer physics. The critical phenomenon
    is also an important background.
    In chapter three, The Simulation Method, we will study how to simulate the
    dynamical system in the computer and our system–binary mixture with linear polymers
    – will also be introduced.
    In chapter four, Result and Discussions, we will analyse our data and try to explain
    the physical mechanism in the system.

    Abstract ii Acknowledgement iii 1 Introduction 1 1.1 Introduction to Polymer . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Introducion to BinaryMixture . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 Introduction to this system. . . . . . . . . . . . . . . . . . . . . . . . . . 6 2 Theoretical and Experimental Backgrounds 10 2.1 Polymer Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.1.1 Polymer properties . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.1.2 The physical picture of a polymer chain . . . . . . . . . . . . . . 13 2.1.3 The dynamic properties of polymers . . . . . . . . . . . . . . . . 27 2.2 The Critical Phenomenon . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.2.1 The Definition of Phase Transition . . . . . . . . . . . . . . . . . 29 2.2.2 The Classification of Phase Transition . . . . . . . . . . . . . . . 30 2.2.3 Order Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.2.4 Correlation Function . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.2.5 Critical Behavior and Exponents . . . . . . . . . . . . . . . . . . 36 3 The Simulation Method 38 3.1 TheMonte Carlomethod . . . . . . . . . . . . . . . . . . . . . . . . . . 38 iv 3.1.1 RandomVariables and Stochastic Process . . . . . . . . . . . . . 40 3.1.2 Importance Sampling . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.1.3 TheMetropolisMethod . . . . . . . . . . . . . . . . . . . . . . . 43 3.2 The Bond FluctuationModel . . . . . . . . . . . . . . . . . . . . . . . . 46 3.3 Model for the Polymer Systemwith a binarymixture solvent . . . . . . . 47 4 Results and Discussions 50 4.1 Pure BinaryMixture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.2 BinaryMixture with Polymers . . . . . . . . . . . . . . . . . . . . . . . . 56 4.2.1 PolymersWhich Has No Interaction. . . . . . . . . . . . . . . . . 56 4.2.2 Polymers InteractingWith The BinaryMixture Solvent . . . . . . 59 4.3 Polymer Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 4.3.1 Polymers have no interactions . . . . . . . . . . . . . . . . . . . . 67 4.3.2 Polymers have interactions . . . . . . . . . . . . . . . . . . . . . . 68 Appendices 80 A The Program for Binary Mixture with Polymers 80 Bibliography 91

    [1] Alexander Yu. Grosberg and Alexei R. Khokhlov, Giant Molecules (Academic
    Press,1997)
    [2] J. H. Hildebrand, Solubility of Non-electrolytes (Reinhold, New York, 1936)
    [3] J. S. Rowlinson, Liquids and Liquid Mixtures (Butterworth, London, 1969)
    [4] J. G. Kirkwood and I. Oppenbeim, Chemical Thermodynamics (McGraw-Hill, New
    York, 1961)
    [5] F. Brochard, P. G. de Gennes, Ferroelectrics , 30, 33 (1980).
    [6] T. A. Vilgis, A. Sans, G. Jannink, J. Phys. II , 3, 1779 (1993).
    [7] M. Stapper, T. A. Vilgis, Europhys. Lett., 42, 7 (1998).
    [8] M. McHugh, F. Rindfleisch, P. T. Kunz, C. Schmalz, M. Buback, polymer , 39, 6049
    (1998).
    [9] M. J. Solomon, S. J. M¨uller, J. Polym. Sci., Part B: Polym. Phys., 34, 181 (1996).
    [10] R. A. Frost, D. Caroline, Macromolecules, 10, 616 (1977).
    [11] A. C. van Asten, W. T. Kok, H. Poppe, J. Polym. Sci., Part B: Polym. Phys., 34,
    283 (1996).
    [12] W. Nierling, E. Nordmeier, Polym. J., 29, 795 (1997).
    [13] P. W. Zhu, D. H. Napper, Macromol. Chem. Phys., 200, 1950 (1999).
    [14] K. To, H. Choi, Phys. Rev. Lett., 80, 536 (1998).
    [15] M. Doi, Introduction to Polymer Physics (CLARENDON PRESS, OXFORD, 1996)
    [16] Alexander Yu. Grosberg and Alexei R. Khokhlow, Statistical Physics of Macromolecules,
    (AIP Press, 1994)
    [17] M. Doi and S. F. Eduards, The Theory of Polymer Dynamics, (CLARENDON
    PRESS, OXFORD 1986)
    91
    Bibliography 92
    [18] Pierre-Gilles de Gennes, Scaling Concepts in Polymer Physics, (CORNELL UNIVERSITY
    PRESS, Ithara and London, 1988)
    [19] Kerson Huang, Statistical Mechanics, (John Wiley & Sons 1987)
    [20] L. E. Reichl, A Modern Course in Statistical Physics 2nd Edition (John Wiley &
    Sons 1997)
    [21] J. M. Yeomans, Statistical Mechanics of Phase Transitions (CLARENDON PRESS,
    OXFORD 1992)
    [22] Richard E.Wilde and Surjit Singh, Statistical Mechanics, Fundamentals and Modern
    Applications, (John Wiley & Sons 1997)
    [23] C. Domb and M. S. Green, Phase Transitions and Critical Phenomena Volume 5a
    (ACADEMIC PRESS 1976)
    [24] C. Domb and M. S. Green, Phase Transitions and Critical Phenomena Volume 8
    (ACADEMIC PRESS 1983)
    [25] C. Domb and M. S. Green, Phase Transitions and Critical Phenomena Volume 12
    (ACADEMIC PRESS 1988)
    [26] Harvey Gould and Jan Tobochnik, An Introduction to Computer Simulation Methods,
    Applications to Physical Systems, (Addison-Wesley 1996)
    [27] K. Binder and D. W. Heermann, Monte Carlo Simulation in Statistical Physics, An
    Introduction (1988)
    [28] David P. Landau and Kurt Binder, A Guide to Monte Carlo Simulations in Statistical
    Physics, (CAMBRIDGE 2000)
    [29] S. Jain, Monte Carlo Simulations of Disordered Systems, (World Scientific 1992)
    [30] P. Y. Lai and K. Binder, J. Chem. Phys., 95, 9288 (1991)
    [31] P. Y. Lai and K. Binder, J. Chem. Phys., 97, 586 (1992); Macromol. Chem. Macromol.
    Symp., 65, 189 (1993)
    [32] P. Y. Lai and E. B. Zhulina, J. Phys. II (Paris), 2, 547 (1992)
    [33] P. Y. Lai and E. B. Zhulina, Macromolecules, 25, 5201 (1992)
    [34] P. Y. Lai, J. Chem. Phys., 98,669 (1993); 100, 3351 (1994)
    [35] P. Y. Lai and J. A. Chen, Phys. Rev. E, 51, 2272 (1995)
    Bibliography 93
    [36] I. Carmesin and Kurt Cremer, J. Phys. France, 51, 915 (1990)
    [37] J. J. Magda, G. H. Fredrickson, R. G. Larson and E. Helfand, Macromolecules, 21,
    726 (1988)
    [38] Kiwing To, Phys. Rev. E, 63, 026108 (2001)
    [39] M. E. Fisher and M. S. Green, Critical Phenomena (Academic Press, London, 1971)
    [40] V. Privman, Finite Size Scaling and Numerical Simulation of Statistical Systems
    (World Scientific, Singapore 1990)
    [41] K. Binder, C. B. Lang and H. Gausterer, Computational Methods in Field Theory
    (Springer, Berlin 1992)

    QR CODE
    :::