跳到主要內容

簡易檢索 / 詳目顯示

研究生: 朱致萱
Zhi-Xuan Zhu
論文名稱: 一些X型小行星密度與孔隙度的關係之比較
Intercomparison of the Relations of Density and Porosity of Some X-type Asteroids
指導教授: 葉永烜
WingHuen Ip
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 天文研究所
Graduate Institute of Astronomy
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 54
中文關鍵詞: X型小行星孔隙度構造
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 小行星的自旋週期極限在探測小行星內部結構時扮演了關鍵角色。直徑大於一公里的小行星,它們的自轉週期不會小於2.2小時,這被稱為「自旋屏障(spin barrier)」,其存在被解釋為小行星是重力束縛的瓦礫堆結構,因此有此自旋週期極限,否則過大的離心力將使小行星崩解。因為不同類型的小行星有不同的體積密度,它們的自旋週期可能不同。我們利用PTF的小行星週期數據庫(Chang et al. 2015, Waszczak et al. 2015)和NEOWISE任務的反照率資料庫(Masiero et al. 2011),來探討X型小行星的自旋屏障,從這個角度來研究小行星的內部結構,其中我們特別關注組成物質為鐵、鎳的M型小行星。我們找到三個各屬於不同化學成份和光譜類型的、自轉速率快的小行星,包括:P型小行星(10305) Grignard、M型小行星(34946) 2286 T-1、E型小行星(10359) 1993 TU36,並假設它們的轉動週期都接近離心力不穩定性條件,以此計算出小行星的體積密度和孔隙度,藉由分析小行星的孔隙度,我們發現E型小行星1993 TU36的內部結構可能發生過重大斷裂事件,P型小行星10305 Grignard和M型小行星 2286 T-1可能為瓦礫堆結構。


    The spin-rate limit of asteroids plays a key role in probing the interior structure of asteroids. The 2.2-hour spin-barrier has been interpreted as a result of the “rubble-pile” structure of asteroids (i.e., gravitationally bounded aggregations). Because asteroids of different types should have different bulk densities, their spin-rate limits could be different. We use the asteroid rotation periods of the PTF project (Chang et al. 2015, Waszczak et al. 2015) and the NEOWISE albedos (Masiero et al.2011; Mainzer et al. 2011) to study the spin-rate limits of X-type asteroids. In this way, we can study their bulk densities, which in turn probes asteroid interior structure. We are particularly interested in the M-type asteroid, which is mainly made of nickel-iron. We found three fast rotating asteroids classified to different chemical compositions and spectrum types: P-type asteroid, (10305) Grignard;M-type asteroid, (34946) 2286 T-1;E-type asteroid, (10359) 1993 TU36. If their gravitational force and centrifugal force were in balance, we found that E-type asteroid, (10359) 1993 TU36, was probably heavily fractured; P-type asteroid, (10305) Grignard and M-type asteroid, (34946) 2286 T-1, were probably rubble-pile structure.

    中文摘要 p.i 英文摘要 p.ii 致謝 p.iii 目錄 p.iv 圖目錄 p.v 表目錄 p.vi 一、 緒論 p.1 1.1 小行星的軌道分布 p.1 1.2 小行星的自旋屏障與體積密度估計 p.5 1.3 小行星的孔隙度與內部構造 p.9 1.4 小行星的顏色分類 p.10 1.5 隕石分類 p.15 二、 研究方法 p.19 2.1 資料來源 p.19 2.2 研究對象的選擇 p.20 2.3 體積密度估計 p.22 2.4 計算孔隙度 p.26 三、 研究結果 p.30 四、 總結 p.33 參考文獻 p.36 附錄一 p.39 附錄二 p.44

    [1] Britt, D. T., et al., “Asteroid density, porosity, and structure”, Asteroids III, pp.485-500, 2002.
    [2] Britt, D. T., Consolmagno, S. J., “Stony meteorite porosities and densities: a review of the data through 2001”, Meteoritics & Planetary Science 38, Nr. 8, pp.1161-1180, 2003.
    [3] Bus, S. J., et al., “Visible-wavelength spectroscopy of asteroids”, Asteroids III, pp.169-182, 2002.
    [4] Bus, S. J., Binzel, R. P., “Phase II of the small main-belt asteroid spectroscopic survey: a feature-based taxonomy”, Icarus 158, pp.146-177, 2002.
    [5] Chang, C.-K., Ip, W.-H., Lin, H.-W., et al. “Asteroid spin-rate study using the Intermediate Palomar Transinet Factory”, ApJ Supp. Ser., 219:27, 2015.
    [6] Fornasier, S., et al., “Spectroscopic survey of M-type asteroids”, Icarus 210, pp.655-673, 2010.
    [7] Fornasier, S., et al., “Spectroscopic survey of X-type asteroids”, Icarus 214, pp.131-146, 2011.
    [8] Harris, A. W., “The rotation rates of very small asteroids: evidence for ‘rubble pile’ structure”, 27th Lunar and Planetary Science Conference, abstract no.1247,1996.
    [9] Hiroi, T., et al., “What are the P-type asteroids made of”, 35th Lunar and Planetary Science Conference, abstract no.1616, League City, Texas, March 15-19, 2004.
    [10] Krot, A. N., et al., “Classification of Meteorites”, pp.83-128, Meteorites, Comets and Planets, Vol.1, A. M. Davis (eds), Treatise on Geochemistry, H. D. Holland and K. K. Turekian (eds), Elaevier-Pergamon, Oxford, 2005.
    [11] Lipschutz, M. E., et al., “Meteoritic parent bedies: Nature, number, size and relation to present-day asteroids”, Asteroid II, pp.740-777, 1989.
    [12] Mainzer, A., et al., “NEOWISE studies of spectrophotometrically classified asteroids: Preliminary results”, ApJ, 741:90, 2011.
    [13] Masiero, J. R., et al., “Main belt asteroids with WISE/NEOWISE I: Preliminary albedos and diameters”, ApJ, Vol. 741, No. 2, 2011.
    [14] Pater, I. D., Lissauer, J. J., Planetary Sciences, Edit. 5th, Cambridge University Press, New York, 2007.
    [15] Pravec, P., Harris , A. W., “Fast and slow rotation of asteroids”, Icarus 148, pp.12-20, 2000.
    [16] Tholen, D. J., “Asteroid taxonomy from cluster analysis of photometry”, Ph. D. dissertation, University of Arizona, 1984.
    [17] Tholen, D. J., Barucci, M. A., “Asteroid taxonomy”, Asteroids II, pp.299-315, 1989.
    [18] Waszczak, A., et al., “Asteroid light curves from the Palomar Transient Factory survey: Rotation periods and phase functions from sparse photometry”, AJ, 150:75, 2015.
    [19] Weisberg, M. K., McCoy, T. J., Krot, A. M., Meteorites and the Early Solar System II, University of Arizona Press, Tucson, pp.19-52, 2006.
    [20] Asteroid Lightcurve Photometry Database
    http://alcdef.org/
    [21] Asteroid spectrum classification using Bus-DeMeo taxonomy
    http://smass.mit.edu/busdemeoclass.html
    [22] ColorBox
    https://www.colourbox.com/image/rock-rubble-and-pebbles-in-a-small-pile-isolated-on-a-white-background-image-3963254
    [23] Meteorite: density & specific gravity
    http://meteorites.wustl.edu/id/density.htm
    [24] IAU Minor Planet Center: Plot of the Inner Solar System
    http://www.minorplanetcenter.net/iau/lists/InnerPlot.html
    [25] IAU Minor Planet Center: Plot of the Outer Solar System
    http://www.minorplanetcenter.net/iau/lists/OuterPlot.html
    [26] Pics about Space
    https://pics-about-space.com/asteroid-belt-and-meteorites?p=2
    [27] SDSS database
    https://sbn.psi.edu/pds/asteroid/EAR_A_I0035_5_SDSSTAX_V1_1/

    QR CODE
    :::