| 研究生: |
藍彥博 Yen-Po Lan |
|---|---|
| 論文名稱: |
有機染料與釕錯合物染料敏化太陽能電池元件優化與光伏特性探討 |
| 指導教授: |
吳春桂
Chun-Guey Wu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學學系 Department of Chemistry |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 118 |
| 中文關鍵詞: | 染料敏化太陽能電池 |
| 外文關鍵詞: | dye-sensitized solar cell |
| 相關次數: | 點閱:24 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
染料敏化太陽能電池(Dye-Sensitized Solar Cell, DSC)具有製作過程簡易、成本低、室內光源發電效率佳等優點,是非常有應用潛力的新世代光伏電池技術。本研究針對實驗室所開發的五種釕金屬錯合物染料HBC-23、DUY-28、DUY-29、HBC-30、及HBC-31和四種有機染料BTI-4、BTI-17、BTI-19、與BTI-21進行元件組裝條件的優化,探討其光電轉換效率及影響光伏行為的參數。在光電極的部分由調整TiO2膜的厚度及TiCl4後處理次數來提高染料吸附量與修補TiO2缺陷;染料溶液則利用添加Chenodeoxycholic acid (CDCA)與染料分子進行共吸附降低染料分子的聚集與填補裸露的TiO2表面;電解液是藉著改變組成(LiI、BMII、GuSCN 、tBP)與濃度,來調整TiO2導電帶能階與提高TiO2表面覆蓋度;對電極則貼上一層鋁箔紙做為光反射層。在HBC-31敏化的元件,其TiO2光電極由一次後處理增加為二次後處理,Jsc值由13.04 mA/cm2提高至14.57 mA/cm2,且在對電極貼上一層鋁箔紙做為光反射層,Jsc進一步提升至16.97 mA/cm2,元件效率達7.19%。HBC-23、DUY-28、DUY-29和HBC-30敏化之元件光電轉換效率分別為8.62%、7.89%、7.31和6.46%。BTI-4敏化之元件優化過後的短路電流密度(Jsc)達21.20 mA/cm2最高光電轉換效率為4.65%,BTI-17、BTI-19和BTI-21光電轉換效率分別為4.56%、0.65%和3.49%。
Dye-sensitized solar cells (DSCs) are the new-generation photovoltaic technologies, which have the advantages such as easy fabrication, low cost and high power conversion efficiency (PCE) under weak light or indoor lighting. In this study, we optimized the device fabrication conditions for five ruthenium complexes sensitizers (HBC-23, DUY-28, DUY-29, HBC-30 and HBC-31) and four organic dyes (BTI-4, BTI-17, BTI-19 and BTI-21) prepared in our Lab. The power conversion efficiency and the parameters affecting the photovoltaic performance of the DSCs ssenisitzed by metal complex and organic dyes were investigated. The dye loading increases and the defects of the photoelectrode reduced by adjusting the thickness and the number of TiCl4 post-treatments of the TiO2 films. Chenodeoxycholic acid (CDCA) was used as a co-adsorbent for decreasing the dye aggregation and mending the uncovered TiO2 surface. The components (LiI, BMII, GuSCN, tBP, I2) and concentration of the electrolyte were used to adjust the energy level of the TiO2 conduction band and protect the surface of TiO2 film. The back of the DSC cell is covered with an aluminum foil as the light reflection layer. The Jsc of thecell sensitized by HBC-31 increased from 13.04 mA/cm2 to 14.57 mA/cm2 by increasing the number of TiO2 post-treatment with TiCl4 form once to two times. When an aluminum foil was pasted to the counter electrode as the light reflection layer, the Jsc of the cell further increases to 16.97 mA/cm2 to reach the PCE of 7.19%. The PEC of HBC-23, DUY-28, DUY-29 and HBC-31 based devices are 8.62%, 7.89%, 7.31 and 6.46%, respectively. The Jsc of BTI-4 is 21.20 mA/cm2 and the highest PCE is 4.65%. The PCE of BTI-17, BTI-19, and BTI-21 sensitized cells are 4.56%, 0.65%, and 3.49%, respectively.
[1] 鍾健文, 王宗昶, “Manufacture Process and Future Technology Development of Various Solar Cells”, 遠東學報第三十卷第二期 (2020年08月16日)
[2] https://www.nrel.gov/pv/cell-efficiency.html (2020年08月16日)
[3] J. Moser; Monatsh. Chemie, 1887, 8, 373.
[4] H. Tsubomura; M. Matsumura; Y. Nomura and T. Amamiya, “Dye sensitised zinc oxide: aqueous electrolyte: platinum photocell”, Nature, 1976, 261, 402-403.
[5] B. O'Regan and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films”, Nature, 1991, 353, 737-739.
[6] M. Grätzel, “Solar Energy Conversion by Dye-Sensitized Photovoltaic Cells”, Inorg. Chem., 2005, 44, 6841-6851.
[7] M. S. Kim, B. G. Kim and J. Kim, "Effective variables to control the fill factor of organic photovoltaic cells" ACS Appl. Mater. Interfaces, 2009, 1, 1264-1269.
[8] V. Thavasi, V. Renugopalakrishnan, R. Jose and S. Ramakrishna, “Controlled electron injection and transport at materials interfaces in dye sensitized solar cells”, Mater. Sci. Eng. R., 2009, 63, 81-99.
[9] M. Law, L. E. Greene, J. C. Johnson, R. Saykally, P. Yang, “Nanowire dye-sensitized solar cells”, Nature, 2005, 4, 455-459.
[10] S. Ito, N. Murakami, P. Comte, P. Liska, C. Grätzel, M. K. Nazeeruddin and M. Grätzel, “Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%”, Thin Solid Films, 2008, 516, 4613-4619.
[11] Frédéric Sauvage, Dehong Chen, Pascal Comte, Fuzhi Huang, Leo-Philipp Heiniger, Yi-Bing Cheng, Rachel A. Caruso and Michael Graetzel “Dye-Sensitized solar cells employing a single film of mesoporous TiO2 beads achieve power conversion efficiencies over 10% ”,ACS Nano, 2010, 4, 4420-4425.
[12] Seulgi So, Imgon Hwanga and Patrik Schmuki “Hierarchical DSSC structures based on “single walled” TiO2 nanotube arrays reach a back-side illumination solar light conversion efficiency of 8%”, Energy Environ. Sci., 2015, 8, 849-854.
[13] A. Hauch, A. Georg, “Diffusion in the electrolyte and charge transfer reaction at the platinum electrode in dye-sensitized solar cells”, Electrochim. Acta, 2001, 46, 3457-3466.
[14] 李佳. “具長碳鏈釕金屬錯合物染料搭配鈷錯合物[Co(bpy)3]2+/3+應用於染料敏化太陽能電池”, 國立中央大學 2014 年碩士論文.
[15] C. Hora, Fa. Santos, M. G. F. Sales, D. Ivanou, and A. Mendes “Dye-Sensitized Solar Cells for Efficient Solar and Artificial Light Conversion” ACS Sustainable Chem. Eng., 2019, 7, 13464-13470.
[16] L. Hu, S. Dai, J. Weng, S. Xiao, Y. Sui, Y. Huang, S. Chen, F. Kong, X. Pan, L. Liang and K. Wang, “Microstructure Design of Nanoporous TiO2 Photoelectrodes for Dye-Sensitized Solar Cell Modules”, J. Phys. Chem., 2007, 111, 358-362.
[17] H. Tian and L. Sun, “Iodine-free redox couples for dye-sensitized solar cells”, J. Mater. Chem., 2011, 21, 10592-10601.15.
[18] S. Yanagida, Y. Yu and K. Manseki, “Iodine/Iodide-Free Dye- Sensitized Solar Cells”, Acc. Chem. Res., 2009, 42, 1827-1838.
[19] J. Cong, X. Yang, L. Kloob and L. Sun, “Iodine iodide-free redox shuttles for liquid electrolyte-based dye-sensitized”, Energy Enviro. Sci., 2012, 5, 9180-9194.
[20] X. Wang, S. A. Kulkarni, B. I. Ito, S. K. Batabyal, K. Nonomura, C. C. Wong, M. Grätzel, S. G. Mhaisalkar and S. Uchida, "Nanoclay gelation approach toward improved dye-sensitized solar cell efficiencies: An investigation of charge transport and shift in the TiO2 conduction band", ACS Appl. Mater. Interfaces, 2013, 5, 444-450.
[21] R. Stalder, D. Xie, A. Islam, L. Han, J. R. Reynolds, and K. S. Schanze, “ Panchromatic Donor–Acceptor–Donor Conjugated Oligomers for Dye-Sensitized Solar Cell Applications”, Appl. Mater. Interfaces, 2014, 6, 8715-8722.
[22] G. Schlichthorl, S.-Y. Huang, J. Sprague and A.-J. Frank, “Band Edge Movement and Recombination Kinetics in Dye-Sensitized Nanocrystalline TiO2 Solar Cells: A Study by Intensity Modulated Photovoltage Spectroscopy”, J. Phys. Chem. B, 1997,101, 8141-8155.
[23] Y. Shi, Y. Wang, M. Zhang and X. Dong, "Influences of cation charge density on the photovoltaic performance of dye-sensitized solar cells: lithium, sodium, potassium, and dimethylimidazolium", Phys. Chem. Chem. Phys., 2011, 13, 14590-14597.
[24] C. Zhang, Y. Huang, Z. Huo, S. Chen and S. Dai,“Photoelectrochemical Effects of Guanidinium Thiocyanate on Dye-Sensitized Solar Cell Performance and Stability”, J. Phys. Chem. C, 2009, 113, 21779-21783.
[25] L. Yang, R. Lindblad, E. Gabrielsson, G. Boschloo, H. Rensmo, L. Sun, A. Hagfeldt, T. Edvinsson and E. M. J. Johansson, "Experimental and theoretical investigation of the function of 4-tert-butyl pyridine for interface energy level adjustment in efficient solid-state dye-sensitized solar cells", ACS Appl. Mater. Interfaces, 2018, 10, 11572-11579.
[26] S. Nakade, T. Kanzaki, W. Kubo, T. Kitamura, Y. Wada, and S.Yanagida, “Role of Electrolytes on Charge Recombination in Dye Sensitized TiO2 Solar Cell (1): The Case of Solar Cells Using the I-/I3- Redox Couple”, J. Phys. Chem. B, 2005, 109, 3480-3487.
[27] C. Zhang, Y. Huang, Z. Huo, S. Chen and S. Da, “Photoelectrochemical effects of guanidinium thiocyanate on dye sensitized solar cell performance and stability”, J. Phys. Chem. C, 2009, 113, 21779-21783.
[28] Q. Wang, J. E. Moser and M. Grätzel, "Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells", J. Phys. Chem. B, 2005, 109, 14945-14953.
[29] C. Longo, A. F. Nogueira and M. A. De Paoli, "Solid-state and flexible dye-sensitized TiO2 solar cells: A study by electrochemical impedance spectroscopy", J. Phys. Chem. B, 2002, 106, 5925-5930.
[30] K. Zhu, N. R. Neale, A. Miedaner and A. J. Frank, "Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays", Nano Lett., 2007, 7, 69-74.
[31] K. Hara, T. Horiguchi, T. Kinoshita, K. Sayama, H. Sugihara and H. Arakawa, "Highly effcient photon-to-electron conversion with mercurochrome-sensitized nanoporous oxide semiconductor solar cells", Solar. Energ. Mat. Solar. Cell, 2000, 64, 115-134.
[32] Xiao Jiang, Tannia Marinado, Erik Gabrielsson, Daniel P. Hagberg, Licheng Sun and Anders Hagfeldt. "Structural Modification of Organic Dyes for Efficient Coadsorbent-Free Dye-Sensitized Solar Cells",J. Phys. Chem. C, 2010, 114, 2799-2805.
[33] Y. Yang, J. Zhang, C. Zhou, S. Wu, S. Xu, W. Liu, H. Han, B. Chen and X. Zhao, "Effect of lithium iodide addition on Poly(ethylene oxide)-poly(vinylidene fluoride) polymer-blend electrolyte for dye-sensitized nanocrystalline solar cell", J. Phys. Chem. B, 2008, 112, 6594-6602.
[34] M. Pastore, E. Mosconi and F. D. Angelis, "Computational investigation of dye-iodine interactions in organic dye-sensitized solar cells", J. Phys. Chem. C, 2012, 116, 5965-5973.
[35] X. Ren, Q. Feng, G. Zhou, C. H. Huang and Z. S. Wang, "Effect of cations in coadsorbate on charge recombination and conduction band edge movement in dye-sensitized solar cells", J. Phys. Chem. C, 2010, 114, 7190-7195.
[36] Z. Sun, R. K. Zhang, H. H. Xie, H. Wang, M. Liang and S. Xue, "Nonideal charge recombination and conduction band edge shifts in dye-sensitized solar cells based on adsorbent doped Poly(ethylene oxide) electrolytes", J. Phys. Chem. C, 2013, 117, 4364-4373.
[37] C. Renault, V. Balland, B. Limoges and C. Costentin, "Chronoabsorptometry to investigate conduction-band-mediated electron transfer in mesoporous TiO2 thin films", J. Phys. Chem. C, 2015, 119, 14929-14937.
[38] M. J. Katz, M. J. D. Vermeer, O. K. Farha, M. J. Pellin and J. T. Hupp, "Dynamics of back electron transfer in dye-sensitized solar cells featuring 4-tert-butyl-pyridine and atomic-layer-deposited alumina as surface modifiers", J. Phys. Chem. B, 2015, 119, 7162-7169.
[39] Z. Yu, M. Gorlov, J. Nissfolk, G. Boschloo and L. Kloo, "Synergistic effect of n-methylbenzimidazole and guanidiniumthiocyanate on the performance of dye-sensitized solar cells based on ionic liquid electrolytes", J. Phys. Chem. C, 2010, 114, 22330-22337.
[40] L. Dloczik, O. Ileperuma, I. Lauermann, L. M. Peter, E. A. Ponomarev, G. Redmond, N. J. Shaw and I. Uhlendorf, "Dynamic response of dye-sensitized nanocrystalline solar cells: characterization by intensity-modulated photocurrent spectroscopy", J. Phys. Chem. B, 1997, 101, 10281-10289.