| 研究生: |
江博閔 Bo-min Jiang |
|---|---|
| 論文名稱: |
一個適用於自動供應雲端系統的動態調適計算架構 A Dynamic Adaptive Computing Framework for Self-Provisioning Cloud Systems |
| 指導教授: |
王尉任
Wei-Jen Wang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 資訊工程學系 Department of Computer Science & Information Engineering |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 60 |
| 中文關鍵詞: | 代理人系統 、自動供應 、自我調適 、雲端計算 |
| 外文關鍵詞: | Cloud Computing, Self-adaptation, Self-Provisioning, Multi-Agent System |
| 相關次數: | 點閱:18 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
新興的雲端運算已經成為大部分國家的重點發展目標。然而現今在雲端環境上自動化與適應性計算的發展仍然是不足的。本研究結合代理人系統、雲端運算以及適應性計算的概念,提出一個在自動供應的雲端環境下,具有自我調適功能的架構。這個架構可以平行處理使用者所提交的工作,並可以在資源不足的狀況之下自動搬移工作到公用雲端的資源上。我們提出了兩種策略去解決系統負擔過重或是負載不平衡的問題。第一種策略是當系統負載不平衡時,代理人會自動的重新分配工作,讓系統能夠負載平衡。第二種策略是當系統發現有新的可用資源時,會將工作遷移到這些新發現的機器上去執行。假如所有系統負擔都過重的話,會自動的在公共雲上新增可用的運算資源供系統使用,這樣一來就可以增加整體效能。此外我們的系統具有容錯的功能,系統會週期性的將目前的狀態儲存下來,因此可以在發生錯誤之後從儲存點繼續進行計算。
The emerging cloud computing technology has become one of the urgent development goals in most developed countries. However, existing automatic/adaptive computing solutions in a cloud environment are still primitive. This work combines the concept of multi-agent systems, mobile agents, and cloud computing systems, and develops a framework to support self-provisioning, adaptability, and dynamic load balancing in a cloud environment. In the proposed framework, user can submit their applications, implemented as a group of mobile agents, to the proposed framework. When the system encounters the problem of system overloading or load imbalance, it will use two strategies to handle this problem. First, the mobile agents themselves can dynamically partition and redistribute the tasks to balance the load. Second, the system can notify the mobile agents to migrate to some free machines. If all resources are busy, the system can create more computing resources in the public cloud to increase the computing pool and to reduce the overall workload. In addition, the state of each application is periodically saved by the system to support fault tolerance.
[1] “QoS in grid computing,” Internet Computing, IEEE, vol. 8, no. 4, pp. 85- 87, 2004.
[2] “Cloud Computing: Distributed Internet Computing for IT and Scientific Research,” Internet Computing, IEEE, vol. 13, no. 5, pp. 10-13, 2009.
[3] “雲端運算與政府組織改造,” 行政院經濟建設委員會.
[4] F. Berman et al., “Adaptive computing on the Grid using AppLeS,” IEEE Transactions on Parallel and Distributed Systems, vol. 14, no. 4, pp. 369- 382, 2003.
[5] R. Olfati-Saber, “Flocking for multi-agent dynamic systems: algorithms and theory,” IEEE Transactions on Automatic Control, vol. 51, no. 3, pp. 401- 420, 2006.
[6] M. Rosenblum and T. Garfinkel, “Virtual machine monitors: current technology and future trends,” Computer, vol. 38, no. 5, pp. 39- 47, 2005.
[7] A. Fuggetta, G. P. Picco, and G. Vigna, “Understanding code mobility,” IEEE Transactions on Software Engineering, vol. 24, no. 5, pp. 342-361, 1998.
[8] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and Cooperation in Networked Multi-Agent Systems,” Proceedings of the IEEE, vol. 95, no. 1, pp. 215-233, 2007.
[9] W.-J. Wang, K. E. Maghraoui, J. Cummings, J. Napolitano, B. K. Szymanski, and C. A. Varela, “A Middleware Framework for Maximum Likelihood Evaluation over Dynamic Grids,” in Proceedings of the Second IEEE International Conference on e-Science and Grid Computing, p. 105,2006.
[10] T. Desell, N. Cole, M. Magdon-ismail, H. Newberg, B. Szymanski, and C. Varela, “Distributed and generic maximum likelihood evaluation,” In 3rd IEEE International Conference on e-Science and Grid Computing , p. 8, 2007.
[11] "VMWare ",http://www.vmware.com/tw/solutions/cloud-computing/.
[12] Tiezhu Zhao, Yilong Ding, V. March, Shoubin Dong, and S. See, “Research on the Performance of xVM Virtual Machine Based on HPCC,” in ChinaGrid Annual Conference, pp. 216-221,2009.
[13] P. Barham et al., “Xen and the art of virtualization,” in ACM SIGOPS Operating Systems Review, New York, NY, USA, pp. 164–177, 2003.
[14] G. Caire, “Jade Tutorial,” Application-Defined Content Languages and Ontologies, 2002.
[15] “Jade: a high-level, machine-independent language for parallelprogramming,” Computer, vol. 26, no. 6, pp. 28-38, 1993.
[16] “MPI: A Message-Passing Interface Standard Version 2.1,” Message Passing Interface Forum, 2008.
[17]"MPICH2 : High-performance and Widely Portable MPI.", http://www.mcs.anl.gov/research/projects/mpich2/.
[18] S. Kaisler and W. H. Money, “Service Migration in a Cloud Architecture,” in 2011 44th Hawaii International Conference on System Sciences (HICSS), pp. 1-10, 2011.
[19] H. Zhang, G. Jiang, K. Yoshihira, H. Chen, and A. Saxena, “Intelligent Workload Factoring for a Hybrid Cloud Computing Model,” in Proceedings of the 2009 Congress on Services - I, pp. 701–708,2009.
[20] W. Pedrycz and Keun-Chang Kwak, “The Development of Incremental Models,” in IEEE Transactions on Fuzzy Systems, vol. 15, no. 3, pp. 507-518, 2007.