跳到主要內容

簡易檢索 / 詳目顯示

研究生: 李柏伸
Po-shen Lee
論文名稱: 以有限時域差分法為基礎之光學模型_應用於具奈微米結構之發光二極體
Optical Model Based on Finite Difference Time Domain Method for Analysis of Light-Emitting Diodes with Microstructures
指導教授: 張正陽
Jenq-Yang Chang
伍茂仁
Mount-Learn Wu
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
畢業學年度: 96
語文別: 英文
論文頁數: 61
中文關鍵詞: 發光二極體有限時域差分法奈微米結構模型
外文關鍵詞: microstructures, FDTD, model, LED, optical peroperty
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文利用有限時域差分法為演算法之基礎,用以分析發光二極體表面之為奈米結構之光學特性;針對其光粹取效率以及光型分布為主要研究方向。並且涵蓋製程與光致發光之角度量測系統量測之結果,用以交互比對模擬預測結果。研究內容包含四類不同用途需求之發光二極體設計,分別為:其一,蝕刻至n型氮化鎵層之近紫外光發光二極體表面結構以提高光粹取效率,過蝕刻側壁粹取主動層所發出之光能,進而縮短光在材料內之路徑以減少材料對光之吸收。其二,使用深蝕刻至n型氮化鎵層的梯型結構之傾斜側壁,粹取在n型氮化鎵層內橫向傳遞的能量並得到一蝙蝠翅膀型之光型分布。其三,利用蝕刻p型氮化鎵層產生之奈微米結構,將發光二極體之光型修整為均勻分布。其四,蝕刻沉積在p型氮化鎵層表面之氮化矽薄膜,產生微奈米結構以集中發光二極體之光型並且避免蝕刻所致之發光二極體電特性破壞。在上述四個案中比對量測與模擬結果,做為模擬模型之可信度驗證。


    In this thesis, a simulation model based on the FDTD algorithm is established to analyze the optical properties of light-emitting diodes such as light patterns and light extraction efficiency. Analyses focus on the effect caused by microstructures on surfaces of light-emitting diodes. Four LEDs for different demands including light extraction enhancement at near UV spectrum region, bat-wings for street lighting, uniform light pattern, concentrated light pattern, are shown theoretically and experimentally. Deep etching microstructures down to n-GaN layer is applied to enhance light extraction efficiency of near-UV light-emitting diodes by attenuating absorption caused by transparent conducting layers. Trapezoidal microstructures with deep etching on LEDs are applied to obtain a bat-wings light pattern by geometrically optical design. The microlens-like structures on p-GaN layer and Si3N4 film are applied to show a uniform intensity and a concentrated intensity in angular distribution, respectively. Also, 2.5-fold light enhancement is obtained in the former case through PL measurement; 1.15-fold, in the latter case. Based on comparisons between simulation and measurement results in these four cases, the credulity of this simulation model can be verified.

    Abstract i 摘要 ii Acknowledgement iii Contents iv Table Captions vi Figure Captions vii Chapter 1 Introduction 1-1 Light Emitting Diodes (LEDs) on Lighting Applications 1 1-2 Research Approaches to LEDs with micro/nano strucutres 3 1-3 Solutions for Light Extraction and Light Pattern Prediction 3 Chapter 2 Model of Simulation 2-1 The FDTD Algorithm 5 2-2 2-Dimensional Simulation Model for LED Light Extraction 7 2-3 Quasi-3-D Simulation Model for LED Light Extraction 9 2-4 Angular-resolved Simulation Method 10 Chapter 3 Measurement System for LEDs Light Patterns 3-1 Photoluminescence Theory 12 3-2 Photoluminescence Angular-resolved System for LED Light Pattern 14 Chapter 4 III-nitride-based Micro-array Light-emitting Diodes with Enhanced Light Extraction Efficiency at Near UV-region 4-1 Solution for Enhancing Light Extraction at Near UV Region 15 4-2 Theoretical and Experimental Demonstration 15 4-3 Summary 21 Chapter 5 Bat-wing Beam Pattern in III-nitride-based Micron LEDs 5-1 Design Principle 23 5-2 Theoretical and Experimental Demonstration 25 5-3 Summary 30 Chapter 6 Modulation in Light Pattern by microstructures on Surface of LEDs 6-1 Solution for Uniform or Concentrated Light Patterns by Using Microlens Arrays on GaN-Based Light-Emitting Diodes 31 6-2 Numerical Design of Uniform Light Pattern by Using Microlens Arrays on p-GaN of LEDs 32 6-3 Experimental Demonstration of Uniform Light Pattern by Microlens Arrays on p-GaN of LEDs 36 6-4 Solution for Concentrated Light Pattern by SixNy-based Microstructure on LEDs 37 6-5 Experimental Demonstration of Concentrated Light Pattern by SixNy-based Microstructure on LEDs 39 6-6 Summary 42 Chapter 7 Conclusion 43 Bibliography 44

    [1] T. Mukai, M. Yamada, and S. Nakamura, “Characteristics of InGaN-basedUV/blue/green/amber/red light-emitting diodes,” Jpn. J. Appl. Phys., vol. 38, no.7A, pp. 3976-3981, July, 1999.
    [2] T. Mukai, M. Yamada and S. Nakamura, “Current and temperature dependences of electroluminescence of InGaN-based UV/blue/green light-emitting diodes,” Jpn. J. Appl. Phys., vol. 37, no. 11B, pp. 1358-1361, Nov., 1998.
    [3] T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening,” Appl. Phys. Lett., vol. 84, no. 6, pp. 855-857, Feb., 2004.
    [4] [4] S. I. Na, G. Y. Ha, D. S. Han, S. S. Kim, J. Y. Kim, J. H. Lim, D. J. Kim, K. I. Min, and S. J. Park, “Selective wet etching of p-GaN for efficient GaN-based light-emitting diodes,” IEEE Photon. Tech. Lett., vol. 18, no. 14, pp. 1512-1514, July, 2006.
    [5] [5] C. H. Kuo, C. C. Lin, S. J. Chang, Y. P. Hsu, J. M. Tsai, W. C. Lai, and P. T. Wang, “Nitride-based light-emitting diodes with p-AlInGaN surface layers,” IEEE Tran. Electron. Dev., vol. 52, no. 10, pp. 2346-2349, Oct., 2005.
    [6] A. David, T. Fuji, R. Sharma, K. McGroddy, S. Nakamura, S. P. DenBaars, E. L. Hu, and C. Weisbuch, “Photonic-crystal GaN light-emitting diodes with tailored guided modes distribution,” Appl. Phys. Lett., vol. 88, pp. 061124-1-061124-3, Feb., 2006.
    [7] C. H. Chao, S. L. Chung, and T. L. Wu, “Theoretical demonstration of enhancement of light extraction of flip-chip GaN light-emitting diodes with photonic crystals,” Appl. Phys. Lett., vol. 89, pp. 091116-1-091116-3, Aug., 2006.
    [8] A. David, T. Fuji, B. Moran, S. Nakamura, S. P. DenBaars, R. Sharma, K. McGroddy, E. L. Hu, and C. Weisbuch, “Photonic-crystal GaN light-emitting diodes with tailored guided modes distribution,” Appl. Phys. Lett., vol. 88, pp. 061124-1-061124-3, Feb., 2006.
    [9] H. W. Choi, C. W. Jeon, and M. D. Dawson, “InGaN microring light-emitting diodes,” IEEE Photon. Technol. Lett., vol. 16, no. 1, pp. 33–35, Jan. 2004. [10] K. H. Kim, J. Li, S. X. Jin, J. Y. Lin, and H. X. Jiang, “III-nitride ultraviolet
    light-emitting diodes with delta doping,” Appl. Phys. Lett., vol. 83, pp. 566-568, July, 2003.
    [10] K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Ant. Prop. 14, 302-307, 1966.
    [11] A. Taflove, and S. C. Hagness, “Computational electrodynamics: The Finite-Difference Time-Domain method 2nd Ed,” Artech House Publishers, Boston, 2000.
    [12] Han-Youl Ryu, Jeong-Ki Hwang, Yong-Jae Lee, and Yong-Hee Lee, “Enhancement of Light Extraction From Two-Dimensional Photonic Crystal
    Slab Structures,” IEEE J. Quantum Electron. vol. 8, no. 2, pp. March/April, 2002.
    [13] Chia-Hsin Chao, and S. L. Chuang, and Tzong-Lin Wu, “Theoretical demonstration of enhancement of light extraction of flip-chip GaN light-emitting diodes with photonic crystals,“ Appl. Phys. Lett., vol. 89, pp. 091116-1- 091116-3, Aug., 2006.
    [14] Dong-Ho Kim, Chi-O Cho, Yeong-Geun Roh, Heonsu Jeon, Yoon Soo Park, Jaehee Cho, Jin Seo Im, Cheolsoo Sone, Yongjo Park, Won Jun Choi, and Q-Han Park, “Enhanced light extraction from GaN-based light-emitting diodes with holographically generated two-dimensional photonic crystal patterns,” Appl. Phys. Lett., vol. 87, pp. 203508-1- 203508-3, Nov., 2005.
    [15] I. Moreno, M. AVendano-Alejo, and R. I. Tzonchev, “Designing Light-emitting diode arrays for uniform near-field irradiance,” Appl. Opt. vol. 45, No.10, pp. 2265-2272, April, 2006.
    [16] I. Moreno, J. Munoz, R. Ivanov, “Uniform illumination of distant targets using a spherical light-emitting diode array,” Opt. Eng. vol. 46(3), pp. 033001-1-033001-7, March, 2007.
    [17] H. T. Hsueh, J. –F. T. Wang, C. H .Chao, W. Y. Yeh, C. F. Lai, H. C. Kuo, T. C. Lu, and S. C. Wang, “Azimuthal Anisotropy of light extraction from photonic crystal Light-emitting Diodes.”
    [18] M.D.B. Charlton, M.E. Zoorob, and T. Lee, “Photonic Quasi-Crystal LEDs Design, modeling, and optimization,” Proc. of SPIE. vol. 6486, pp. 64860R-1-64860R-10, 2007
    [19] H. W. Choi, C. Liu, E. Gu, G. McConnell, J. M. Girkin, I. M. Watson, and M. D. Dawson, “GaN micro-light-emitting diode arrays with monolithically intgrated sapphire microlenses,” Appl. Phys. Lett. vol. 84 pp. 2253-2255, March., 2004.

    QR CODE
    :::