跳到主要內容

簡易檢索 / 詳目顯示

研究生: 謝博凱
Po-Kai Hsieh
論文名稱: 體積全像碟片位移之伺服補償研究
Study of Servo Compensation over Shifting Volume Holographic Disc
指導教授: 楊宗勳
Tsung-Hsun Yang
孫慶成
Ching-Cherng Sun
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 照明與顯示科技研究所
Graduate Institute of Lighting and Display Science
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 80
中文關鍵詞: 全像儲存
外文關鍵詞: holographic data storage
相關次數: 點閱:20下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,探討體積全像片位移後所導致的繞射訊號快速衰減,考慮如何做位移補償以回復原訂儲存點的訊號正確讀取。在理論上利用純量繞射理論與相位疊加法為基礎,推導出當記錄介質在不同位移量對繞射訊號強度之關係式,由此獲得調整讀取光入射角度以補償修正紀錄介質位移的方法。此外,由於訊號隨位移量增加而衰減過快,故將參考光由平面波改為球面波,使得參考光於經過物鏡後之聚焦深度改變,進而改變被紀錄全像之光柵密度,故能改善訊號讀取時的位移容忍度。最後,我們根據同軸全像儲存模型進行碟片位移補償模擬與實驗,驗證此位移補償方法之可行性。


    In this thesis, we study a new scheme to compensate the position error so that the reading of the holographic disc can be on the correct position and to prevent from large decay of the signal. In theory, based on VOHIL model, we build a formula to describe diffraction intensity with respect to the lateral shift of the disc and then obtain the compensation with angle tuning. Besides, owing to dramatic decay of the signal upon disc shift, we use a spherical wave to replace the original lane wave. The spherical wave enables more phase modulation. We can adjust the focal depth of the reference across the holographic media, and equivalently adjust the fringe density so that the position tolerance can be enlarged. Finally, the corresponding experiments have been done to verify the proposed scheme, and to figure the potential in practice.

    摘 要 i 目 錄 ii 圖 目 錄 vi 第一章 緒論 1 1.1 前言 1 1.2 全像儲存背景 2 1.3 離軸式全像儲存系統 3 1.4 同軸式全像儲存系統 5 1.5 伺服補償機構 7 第二章 理論基礎 9 2.1 全像術簡介 9 2.2 布拉格條件 12 2.3 耦合波理論 15 2.4 相位疊加法 22 2.5 全像儲存系統等效模型與公式推導 26 第三章 全像儲存與補償系統 34 3.1 全像儲存與補償系統架構 34 3.2 伺服補償分析與布拉格條件 36 第四章 伺服補償模擬與實驗 40 4.1 伺服補償模擬與位移容忍度提升 40 4.2 利用壓電陶瓷平移台之伺服補償實驗 49 第五章 結論 58 參考文獻 59 中英文名詞對照表 63

    1. P. J. van Heerden, “Theory of optical information storage in solids,” Appl. Opt. 2,393 (1963).
    2. G. W. Burr and R. M. Shelby, “Piexl-Matched Phase-Conjugate Holographic Data Storage,” SPIE Holography Newsletter, p.8 (1999).
    3. F. Zhao and K. Sayano, “Compact Read-Only Memory with Lensless Phase-Conjugate Holograms,” Opt. Lett. 21, 1295 (1996).
    4. K. Curtis and Wlliam L. Wilson, “Architecture and Function of InPhase’s Holographic Drive,” Asia-Pacific Data Storage Conference, Invited Talk (2006).
    5. K. Anderson , E. Fotheringham, A. Hill, B. Sissom, and K. Curtis, “High Speed Holographic Data Storage at 500Gb/in2,” SMPTE Motion Imaging Journal, 200-203 (2006).
    6. K. Curtis, L. Dhar, A. Hill, W. Wilson and M. Ayres, Holographic Data Storage: From Theory to Practical Systems (John Wiley & Sons, New York, 2010).
    7. H. Horimai, X. Tan, and J. Li, “Collinear holography,” Appl. Opt. 44, 2575-2579 (2005).
    8. H. Horimai, and X. Tan, “Collinear technology for a holographic versatile disk,” Appl. Opt. 45, 910-914 (2006).
    9. H. Horimai and J. Li, “A novel collinear optical setup for holographic data storage system,” Proc. SPIE 5380, Optical Data Storage 2004, 297-303 (2004).
    10. H. Horimai, and Y. Aoki, “Holographic Versatile Disc (HVD),” in Interational Symposium on Optics Memory and Optical Data Storage , OSA Technical Digest Series (Optical Society of America, 2005), paper ThE6.
    11. H. Horimai, and X. Tan, “Advanced Collinear Holography,” Opt. Rev. 12, 90-92 (2005).
    12. H. Horimai, and X. Tan, “Holographic versatile disk system,” Proc. SPIE 5939, 1-9 (2005).
    13. H. Horimai, and X. Tan, “Read-only holographic versatile disk system using laser,” Proc. of SPIE 6252, 62520Z-1- 62520Z-5 (2006).
    14. T. Shimura, S. Ichimura, R. Fujimura, K. Kuroda, X. Tan, and H. Horimai, “Analysis of a collinear holographic storage system: introduction of pixel spread function,” Opt. Lett. 31, 1208-1210 (2006).
    15. T. Shimura, S. Ichimura, R. Fujimura, K. Kuroda, X. Tan, and H. Horimai, “Calculation of the Pixel Spread Function with a Simple Numerical Model for the Collinear Holographic Storage System,” in International Symposium on Optical Memory and Optical Data Storage, OSA Technical Digest Series, paper PD6 (2005).
    16. T. Shimura, Y. Ashizuka, M. Terada, R. Fujimura, and K. Kuroda, “What Limits the Storage Density of the Collinear Holographic Memory,” in Optical Data Storage, OSA Technical Digest Series (CD), paper TuD1 (2007).
    17. S.Y. Lim, N. Kim, K. Jung, “Tracking servo method for holographic data storage using discrete pre-patterns,” Microsyst Technol, 18, 1711-1717. (2012).
    18. 趙致傑,反覆學習控制於光碟機循軌伺服系統之應用,國立雲林科技大學機械工程所碩士論文,中華民國九十二年。
    19. 江柏融,基於單模光纖系統之微光學讀寫機構設計與分析,國立交通大學機械工程學系碩士論文,中華民國九十八年。
    20. 黃炳逢,最小變異控制應用於光學循軌伺服系統之研究,國立交通大學電機與工程學系碩士論文,中華民國九十三年。
    21. K. Hirooka, et al., “Development of a Coaxial type Holographic Disc Data Storage Evaluation System, Capable of 500fps- Consecutive Writing and Reading,” Tech. Digest of ODS2006, MA4.
    22. K. Takasaki, et al., “Optical System Designed for Coaxial Holographic Recording on Continuously Rotating Disc,” Tech. Digest of ODS 2006, TuC4.
    23. Yoshiyuki Matsumura, et al. “Tilt compensation method of two-beam angle multiplexingb holographic memory,” ISOM conference Oct 15-19, 2006, paper Mo-D-08, Takamatsu, Japan.
    24. K. Takasaki, et al, "Optical System Designed for Coaxial Holographic Recording on Continuously Rotating Disc", Optical Data Storage 2006, April 23-26, Montreal.
    25. K. Takasaki et al., “High speed data recording and retrieving using the image-stabilizing technique in a coaxial holographic disk system,” Tech. Digest of ODS 2007, WDPDP2.
    26. A. Yariv, and P. Yeh, Optical Waves in Crystals (John Wiley & Sons, New York, 1984).
    27. 蔡孟芬,同軸式體積全像光碟儲存系統之研究,國立中央大學光電所碩士論文,中華民國九十五年。
    28. 謝舒菁,同軸式體積全像儲存系統之研究與改良,國立中央大學光電所碩士論文,中華民國九十六年。
    29. 鄭智元,利用相位調製改良同軸式體積全像儲存系統,國立中央大學光電所碩士論文,2008年。
    30. 鄭智元,同軸式全像儲存系統紀錄介質具有離焦之研究,國立中央大學光電所博士論文,中華民國一百零四年。
    31. H. Kogelnlnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909-2947 (1969).
    32. C. C. Sun, W. C. Su, B. Wang, and Y. O. Yang, “Diffraction selectivity of holograms with random phase encoding,” Optics Communications 175, 67-74 (2000).
    33. B. Wang, C. C. Sun, W. C. Su, and Arthur E. T. Chiou, “Shift-tolerance property of an optical double-random phase-encoding encryption system,” Appl. Opt. 39, 4788-4793 (2000).
    34. C. C. Sun, “Simplified model for diffraction analysis of volume holograms,” Opt. Eng. 42, 1184-1185 (2003).
    35. 余業緯,同軸全像儲存系統之特性與改良及溫度補償,國立中央大學光電所博士論文,中華民國九十八年。
    36. 鄭智元、余業緯、孫慶成,同軸式全像資訊儲存系統之理論模型,科儀新知第198期,73-84頁,2014年3月。
    37. J. W. Goodman, Introduction to Fourier Optics, 2nd eds. (McGraw-Hill, New York, 2002).
    38. 游漢輝,傅氏光學,滄海出版社,2006年。
    39. B. L. Booth, “Photopolymer material for holography,” Appl. Opt. 14, 593- 601 (1975).
    40. A. Pu and D. Psaltis, “High-density recording in photopolymer-based holographic three-dimensional disks,” Appl. Opt. 35, 2389- 2398 (1996).
    41. K. Curtis, A. Pu, and D. Psaltis, “Method for holographic storage using peristrophic multiplexing,” Opt. Lett. 19, 993- 994 (1994).
    42. S. H. Lin, Ken Y. Hsu, W. Z. Chen, and W. T. Whang, “Phenanthrenequinone-doped poly (methyl methacrylate) photopolymer bulk for volume holographic data storage,” Opt. Lett. 25, 451- 453 (2000).
    43. K. Y. Hsu, S. Lin, Y. Hsiao, and W. Whang, “Experimental characterization of phenanthrenequinone-doped poly (methyl methacrylate) photopolymer for volume holographic data storage,” Opt. Eng. 42, 1390- 1396 (2003).
    44. Y. Hsiao, W. Whang, and S. Lin, “Analyses on physical mechanism of holographic recording in phenanthrenequinone-doped poly (methyl methacrylate) hybrid materials,” Opt. Eng. 43, 1993- 2002 (2004).
    45. J. Mumbru, I. Solomatine, D. Psaltis, S. H. Lin, Ken Y. Hsu, W. Z. Chen, and W. T. Whang,“Comparison of the recording dynamics of phenanthrenequinone-doped poly (methyl methacrylate) materials,” Opt. Commun. 194, 103- 108 (2001).

    QR CODE
    :::